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Background 
 

Treebanks are annotated corpora containing information about syntactical and 

semantic structure. They are important in the field of natural-language understanding 

because they allow the application of supervised machine learning algorithms to learning 

said syntactical and semantic structure. One of the most widely used and annotated 

corpora is a large set of Wall Street Journal articles. The Penn Treebank annotated this 

corpus with parse trees; Kingsbury and Palmer created the PropBank project as an 

extension to this by adding semantic role labels for verbs. For each verb in the corpus, 

PropBank contains information about senses (“frames”) and the arguments typically 

associated with each sense. Then, annotations to the corpus label verbs and their 

arguments according to this predetermined scheme. 

NomBank is in a sense a twin project to PropBank; it uses the same corpus, 

instead labeling the arguments of nouns, together with similar word-sense 

disambiguation. Since NomBank’s annotations are similar in both structure and intent to 

PropBank’s, it makes sense to try to adapt existing machine learning techniques for 

PropBank to NomBank. 

David Vickrey, a graduate student in Daphne Koller’s AI group at Stanford, has 

worked on a semantic role labeling system that applies SVM classification techniques to 

PropBank. We set out to adapt his code to NomBank, producing a semantic role labeling 

system for nouns; we also decided to investigate relationships between the two datasets. 

Due to the structure of the semantic information included with NomBank and PropBank, 



several interesting applications are possible; one example is the rephrasing of sentences 

containing verb nominalizations (nouns like “assassination” that encapsulate the meaning 

of a verb) to use the original verb instead. 

 
Algorithms 
 

The code constructs two classifiers. The first identifies words that definitely aren’t 

frames (nouns that can be labeled), versus words that might be frames. The second 

classifies frames and their arguments. The first classifier is not strictly necessary, but it 

may be better at picking out the words which are obviously not frames. Also, the second 

classifier is multidimensional, so it takes a proportionally longer time to run than the first. 

Therefore using the first classifier to weed out words to speed up the second classifier 

saves a lot of time. 

The two classifiers are Support Vector Machines. The basic idea behind Support 

Vector Machines is very similar to other classifiers. In the linear case, you have two types 

of points in multidimensional space. You want to find a hyperplane that divides them 

perfectly with all of one type on one side and all of the other on the other side, and you 

want the distance from the hyperplane to the closest point of each type to be as great as 

possible. It turns out that this plane is defined by a particular type of vector called a 

support vector; these are the vectors closest to the hyperplane. It is possible to find the 

appropriate vectors by means of a minimization of their magnitude subject to a particular 

constraint, and this gives you your classifier. 

The multidimensional case is a bit more complicated. Here you have more than 

two types of points you would like to classify. The surface that you would like to use to 

divide them would need to be more complex, and your previous algorithm would fail to 



work. However, it turns out that there is a method called the “kernel trick” to formulate 

the multidimensional classifier in such a way that the original algorithm would work by 

mapping the space into a different set of dimensions. 

The classifiers use a number of features to determine if a word is of a particular 

type. It uses a data-rich representation of the sentence to derive these features, many of 

which are dependent on the sentence parse as a whole. There is a standard set of features 

which were being used in the classifier when it was given to us by David Vickrey. They 

include the target word, the parse path to the target word, whether the current word is 

before/after the target word, the head word of the phrase, and so on. There are also 

pairwise features which combine two or more other features, for example the target word 

and the head word. They are used when two pieces of information are thought to correlate 

in some way, or to provide additional information together from when they were 

separate. 

This two-pass system, together with the use of parse information in the features, 

appears in the literature (Jurafsky) as a current and effective method of semantic role 

labeling. 

 
Adapting the System 
 

Although NomBank is syntactically similar to PropBank, it required an extended 

process of text pre-processing, together with small adjustments to the code, before we 

could run it successfully. Some of the issues required compromises. For example, 

NomBank uses some tags that are not in the PropBank specification in order to assign 

different semantic roles to the different parts of a hyphenated word or phrase. Since we 

could not realistically adapt the existing code to make use of this information, we simply 



dropped the tags. One possible area for future investigation (short of adding full support 

for hyphenation) is collapsing the hyphen tags, overloading the hyphenated word with all 

its semantic roles. 

Once we had it running, it was fairly straightforward to adapt the classification 

and evaluation procedures to the new data set. The existing system had a very 

comprehensive range of features. However, we saw an opportunity for extension in the 

NomLex file that comes packaged with NomBank. NomLex is effectively a dictionary 

rather than a corpus, containing a list of properties of nouns, together with some 

information about their potential semantic roles. One datum given for almost every noun 

is a “NOM-TYPE,” which reflects whether a noun is a nominalization and what kind of 

nominalization it is. For example, “casualty” is an “OBJECT”, while “caroler” is a 

“SUBJECT”, “concussion” is a “VERB-NOM” (verb nominalization), and 

“confidentiality” is an “ADJ-NOM”. We decided to use these types as features to the 

classifier, pairing them with the parse features to create polynomial features. 

One problem with our use of NomLex is that it was not integrated with the system 

of frames and word-sense disambiguation used by NomBank and PropBank. For 

example, it lists “acrimony” as both an “ADJ-NOM” (in the sense of “acrimoniousness”) 

and a “VERB-NOM” (in the sense of a conflict or clash); no cross-reference to a possible 

frame-based distinction in NomBank is given. Since we could only associate one type 

with the ambiguous noun name, we simply chose the last one given. One area for further 

investigation might be a better way to choose the type in these cases, although the 

problem is sufficiently rare that no significant benefits might be derived. 

 



Results 
 
Diagnostic: Nombank on 50 frames, with the noun type crossed with the listed feature 
Feature Precision Recall 
(none) 0.900585 0.785714 
ambiguous_frame_name 0.900585 0.785714 
head_word 0.894737 0.780612 
path 0.928144 0.790816 
phrase_type 0.906433 0.790816 
path_length_string 0.916667 0.785714 
head_word_phrase_type 0.905325 0.780612 
parent_phrase_type 0.911765 0.790816 
first_word 0.901163 0.790816 
last_word 0.905325 0.780612 
is_passive 0.900585 0.785714 
left_phrase_type 0.905325 0.780612 
right_phrase_type 0.900585 0.785714 
left_head_word 0.912281 0.795918 
right_head_word 0.883721 0.77551 
 
Effect of the number of frames on precision: 
Number of 
Frames Propbank Nombank (base) Nombank (augmented) 

10 0.930857 0.963504 0.942029 
25 0.929021 0.971223 0.943262 
50 0.923655 0.900585 0.928994 

100 0.909869 0.907631 0.858238 
 
 
Effect of the number of frames on recall: 
Number of 
Frames Probank Nombank (base) Nombank (augmented) 

10 0.91947 0.88 0.866667 
25 0.919929 0.89404 0.880795 
50 0.904966 0.785714 0.80102 

100 0.8924 0.81295 0.805755 
 
Number of correctly labeled sentences for the base and augmented classifiers over 
different numbers of frames: 
Number of 
Frames Nombank (base) Nombank (augmented) 

10 132 130 
25 135 133 
50 154 157 

100 226 224 
 



Number of incorrectly labeled sentences for the base and augmented classifiers over 
different numbers of frames: 
Number of 
Frames Nombank (base) Nombank (augmented) 

10 5 8 
25 4 8 
50 17 12 

100 23 37 
 
 
Analysis 
 

As seen in the table above, we found that the most effective features to pair with 

noun type were path, path length, phrase type, parent phrase type, first word, and left 

head word. We therefore added all of these features to the classifier. On 50 frames, this 

seemed to be efficacious, adding about 2% to the precision. However, on 100 frames, 

these additional features actually dropped the precision by about 5%. There are two 

probable explanations for this. 

First, it is possible that which features were helpful on the first 50 frames was not 

representative of the next 50 frames. Most of the errors were caused by the classifier 

labeling words that shouldn’t be labeled, so it is possible that the extra features weren’t 

adding much in the way of actual information and were just making the classifier more 

likely to label any given word. 

Second, it is possible that the additional features caused the classifier to overfit to 

the training data. Including additional features means that more information is being 

stored about the training set examples, in effect, and if that information is not particularly 

useful in determining the relevant classifications it will just cause the classifier to pick 

words that are similar to the words in the training set. 



An interesting feature of the results can be seen when the number of correct 

sentence assignments for the base nombank classifier versus the number correct for the 

augmented nombank classifier is graphed, and the same is done for incorrect sentence 

assignments (please see the excel file for these graphs). The number correct matches up 

fairly well between the two classifiers. However, the number incorrect varies 

proportionally more widely. This suggests that while both classifiers label correctly with 

the same degree of accuracy, their principal difference is in how many they label 

incorrectly/fail to label correctly. This lends more credence to the supposition that the 

performance of these features on 50 frames was not representative of their performance 

overall, because the graphs indicate that of 10, 25, 50, and 100 frames, the only time that 

the augmented classifier labels more sentences incorrect than the base classifier is for 50 

frames. 

In terms of what errors are made most commonly, an examination of the error 

logs reveals that most specific mislabelings for both classifiers were the labeling of words 

that weren’t arguments as arguments, or vice versa; it was rare that the classifier 

mislabeled a word that is an argument as the wrong argument type. Therefore, the 

classifier is very good at determining the correct argument type once it has found an 

argument, but less good at identifying the specific arguments. A good avenue of further 

research then might be to train a classifier that just tries to label words as arguments or 

not arguments and lets a later stage determine which arguments they are. 

 
Application: Rephrasing 
 

One of the questions we began with was the problem of taking a sentence 

containing a nominalization and rephrasing it to use the corresponding verb. In addition 



to its labeling of noun arguments within the corpus, NomBank contains a considerable 

amount of syntactic and semantic information. NomBank’s frame files contain, in XML 

format, a brief description of the meaning of the arguments of every word (in every 

sense) labeled in the corpus, together with XML-tagged sample sentences. Furthermore, 

NomBank is packaged with (and in some sense built on top of) the NomLex project 

mentioned earlier, which seeks to classify nouns by type and associate them with the 

syntactic properties of their arguments. Given the amount of available data, we realized 

that rephrasing sentences would be simple in principle but difficult to put into practice. 

What follows is a description of how such a system could be implemented. 

Our classifier can label the arguments of an arbitrary phrase in the corpus, for 

example: “The assassination of President Kennedy by Lee Harvey Oswald.” (The 

requirement that the phrase occur in the corpus has to do with the fact that we only have 

sufficiently detailed semantic information for words that occur in the corpus.) The 

classifier gives us that “assassination” occurs in its sense of “assassination.01”, and that 

Kennedy was ARG1 and Oswald ARG0.  Now, we can consult the NomBank frame file 

to determine that “assassination.01” is associated with the verb “assassinate.01” in 

PropBank, together with the fact that Kennedy was the patient (ARG1) and Oswald the 

agent (ARG0) of the assassination. Now, consulting the PropBank frame file for 

“assassinate.01”, we can choose between an active and a passive construction. In the first 

case, the XML tags indicate to put ARG0 in front, the verb in the middle, and ARG1 at 

the end; in the second, the order is reversed. We might end by producing “Lee Harvey 

Oswald [assassinate] Kennedy.” 



The significant remaining issue is conjugating the verb. In this, we are helped by 

the fact that our classifier does a machine parse of the sentence; in particular, it can 

access the person and number of each argument, together with the tenses of any verbs. In 

fact, whether the sentence is active or passive is already available as a feature of the 

parse, so acquiring this additional information should not be difficult. 

  It is possible to replace certain uses of the frame files in this process with 

references to NomLex, which contains more data and would work on sentences with 

words not occurring in the corpus; however, this comes at a cost. NomLex is far more 

liberal in its association of nouns with verbs. For example, it considers “carnival” to be a 

nominalization of “commemorate.” Second, it does not include word-sense 

disambiguation, creating a variety of possible problems with heavily overloaded nouns. 

 
Topics for further investigation 
 

A number of possible extensions have been mentioned throughout the paper. 

However, one item in particular deserves mention. In the middle of our project, a new 

version of NomBank was released; the new version includes more comprehensive 

annotations, together with cross-links between compound/plural nouns and their 

constituent parts. It is possible that this information could simplify the implementation of 

rephrasing or improve the precision of the labeling system. 
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