
Feng Gao, Feb. 26th, 2015 

TEXT CLASSIFICATION 



Outline 

¤ Definition 
¤ Text Representation 
¤ Feature selection 
¤ Text Classification with Naive 

Bayes 
¤ The Voted Perceptron  
¤ Examples 



What is classification? 

¤ Classification or categorization is the task of assigning 
objects from a universe to two or more classes or categories. 

 
¤ Classification is the task of choosing the correct class 

label for a given input. 



What is supervised Classification? 

¤ A classifier is called supervised if it is built based on 
training corpora containing the correct label for each input. 



What is text classification? 
¤ The classifier:  
– Input: a document x  
– Output: a predicted class 

y from some fixed set of 
labels 

¤ The learner:  
– Input: a set of m hand-

labeled documents 
 
– Output: a learned 

classifier f: 



Application 

¤ Personal email sorting 
¤ Automatic detection of spam pages 
¤ Automatic detection of sexually explicit content 
¤ Automatic classification of a review as positive or negative 
¤ Topic-specific or vertical search 
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Text Representation 



Text Representation 

¤ Document is represented as a vector of attribute values 
¤ Attributes: 
“Bag of words” method: Use a set of words as attributes 
 



Text Representation 
¤ Attribute values: 
Method 1:  
use 0 or 1 as attribute value 
Method 2:  
use the absolute or relative frequency of each word 
Method 3:  
use TF-IDF weight as the attribute value 

 



Method 1 

Training data sets: 
¤ Method 1: 



Method 2 

Training data sets: 
¤ Method 2 with absoluate frequency: 



Method 3 
¤ TF: term frequency 
¨  Definition: TF = tij 
¨  frequency of term i in document j 
¨  Purpose: makes the frequent words for the document more important 

¤  IDF: inverted document frequency 
¨  Definition: IDF = log(N/ni) 
¨  ni : number of documents containing term i 
¨  N : total number of documents 

¤  TF-IDF value of a term i in document j 
¨  Definition: TF×IDF = tij  * log(N/ni) 



Text Processing 

¤ Word (token) extraction 
¤ Stop words removal 
¤ Stemming 
¤ Feature Selection 



Text Processing 



Word (token) extraction 

¨  Extract all the words in a document 
¨  Convert them into lower cases 



Classifying Email into Acts 

¨  From EMNLP-04, Learning to Classify Email into Speech Acts, 
Cohen-Carvalho-Mitchell 

¨  An Act is described as a verb-noun pair (e.g., propose meeting, 
request information) - Not all pairs make sense. One single email 
message may contain multiple acts. 

¨  Try to describe commonly observed behaviors, rather than all 
possible speech acts in English. Also include non-linguistic usage of 
email (e.g. delivery of files) 



Classifying Email into Acts 



Classifying Email into Acts 



Word (token) extraction for Email 



Stop words removal 

¤ The most frequently used words in English 
¤ Examples of stop words 
¨  the, of, and, to, a, … 

¤ Typically about 400 to 500 such words 
¤ Additional domain-specific stop words 
¤ Stop words are usually removed 



Stemming 
¤  find the root/stem of a word 
¤ Reduce the number of words 
¤  Improve effectiveness of text classification 
¤ For example: 
¨  discussed 
¨  discusses 
¨  discussing 
¨  Discuss 
¨  Stem: discuss 



Example Stemming Rules 

¤ Remove ending 
¨  If a word ends with s, preceded by a consonant other than an s, then 

delete the s. 

¤ Transform words 
¨  If a word ends with “ies” but not “eies” or “aies”, then “ies” is replaced 

with “y”. 
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Feature Selection 

 
¤ Selecting the “bag of words” to represent documents 
 
¤ Why do we need to select? 
¨  Leaning program may not be able to handle all possible features 
¨  Good features can result in higher accuracy 



Feature Selection Methods 
 
¤ Class independent methods (Unsupervised) 
¨  Document Frequency (DF) 
¨  Term Strength (TS) 

¤ Class-dependent methods (Supervised) 
¨  Information Gain (IG) 
¨  Mutual Information (MI) 

¨        statistic (CHI) 



Document Frequency (DF) 
 
¤ Document frequency of a word 
¨  DF (w) = number of documents containing w 

¤ Advantages 
¨  Can remove rare words (hence noise) 
¨  Easy to compute 

¤ Disadvantages 
¨  Class independent 
¨  Some infrequent terms can be good discriminators, which cannot be selected by this 

method. 



Information Gain 
 
¤  A measure of importance of the feature 
 
¤  The number of “bits of information” gained by knowing the word is 

present or absent 

 

¤  Rank the words according to their information gain value 
 
¤  Select the first m words with high gain values 



Information Gain 
 
¤ Advantage 
¨  Consider the classes 

¤ Disadvantage 
¨  computationally expensive 
 

¤ Remove rare words (appears 1 or 2 times) 
¨  reduce the amount of computation, and 
¨  remove noisy words that have by-chance correlations with the classes. 



What Do People Do In Practice? 
 
¤ Infrequent term removal 
¨  infrequent across the whole collection (i.e. DF) 

¨  met in a single document 

¤ Most frequent term removal (i.e. removing stop words) 
¤ Stemming. (often) 
¤ Use a class-dependent method (e.g., the information gain method) 

to select features. 



Naive Bayes 



Text Classification with Naive Bayes 
 
¤ Represent document x as list of words w1,w2,… 
¤ For each y, build a probabilistic model Pr(X|Y=y) of 

“documents” in class y 
¤ To classify, find the y which was most likely to generate 

x—i.e., which gives x the best score according to Pr(x|
y) 



Text Classification with Naive Bayes  
¤ How to estimate Pr(X|Y) ? 
¤ Simplest useful process to generate a bag of words: 
¨  pick word 1 according to Pr(W|Y) 

¨  repeat for word 2, 3, .... 

¨  each word is generated independently of the others (which is clearly not true) but means 

 



Text Classification with Naive Bayes  
¤ How to estimate Pr(X|Y) ? 

 

¤ This gives score of zero if x contains a brand-new word 
 



Text Classification with Naive Bayes 
 
¤ How to estimate Pr(X|Y) ? 
 
 
 
 

¤ This Pr(W|Y) is a multinomial distribution 
¤ This use of m and p is a Dirichlet prior for the multinomial 



Text Classification with Naive Bayes 
 
¤ Putting this together: 
¤ for each document    with label 

 



Text Classification with Naive Bayes 
 
¤ to classify a new x=    ...    , pick y with top score:  



Naïve Bayes for SPAM filtering 
 
¤ Sahami et al, 1998 
¤ Used bag of words, + special phrases (“FREE!”) and 

+ special features (“from *.edu”, …) 

 





Naïve Bayes for SPAM filtering 

 

 



Naive Bayes Summary 
 
¤ Pros:  
¨  Very fast and easy-to-implement 

¨  Well-understood formally & experimentally 

¤ Cons: 
¨  Seldom gives the very best performance 
¨  “Probabilities” Pr(y|x) are not accurate 



The Voted Perceptron 



The Voted Perceptron 



Classifying Reviews as Favorable or Not 
 
¤ Turney, ACL 2002 
¤ Dataset: 410 reviews from Epinions 
¨  Autos, Banks, Movies, Travel Destinations 

¤ Learning method: 
¨  Extract 2-word phrases containing an adverb or adjective (eg 

“unpredictable plot”) 

¨  Classify reviews based on average Semantic Orientation 
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Classifying Reviews as Favorable or Not 
 
¤ Pang et al, EMNLP 2002 
¤ 700 movie reviews (ie all in same domain); Naïve 

Bayes, MaxEnt, and linear SVMs; accuracy with 
different representations x for a document 

¤ Interestingly, the off-the-shelf methods work well…
perhaps better than Turney’s method. 



Classifying Movie Reviews 

 



Classifying Movie Reviews  
¤ Assume the classifier is same form as Naïve Bayes, 

which can be written: 
 
 
¤ Set weights (λ’s) to maximize probability of the 

training data: 



MaxEnt classification 

 
 
 



Thank you! 


