TEXT CLASSIFICATION

Feng Gao, Feb. 26th, 2015

Outline

Definition

- Text Representation
- Feature selection
- Text Classification with Naive Bayes
- The Voted Perceptron
- Examples

What is classification?

Classification or categorization is the task of assigning objects from a universe to two or more classes or categories.

Classification is the task of choosing the correct class label for a given input.

What is supervised Classification?

A classifier is called supervised if it is built based on training corpora containing the correct label for each input.

What is text classification?

The classifier:

- Input: a document x
- Output: a predicted class
 y from some fixed set of
 labels y₁,...y_k

- The learner:
- Input: a set of m handlabeled documents
 - $(x_1, y_1), \dots, (x_m, y_m)$
- Output: a learned classifier f: X → Y

Application

- Personal email sorting
- Automatic detection of spam pages
- Automatic detection of sexually explicit content
- Automatic classification of a review as positive or negative
- Topic-specific or vertical search

Representation of text

Text Representation

Text Representation

Document is represented as a vector of attribute values

Attributes:

"Bag of words" method: Use a set of words as attributes

Text Representation

Attribute values:

Method 1:

use 0 or 1 as attribute value

Method 2:

use the absolute or relative frequency of each word

Method 3:

use TF-IDF weight as the attribute value

Method 1

Training data sets:

■ Method 1:

	word ₁	word ₂	•••	word _m	Class
document ₁	0	1		1	C1
document ₂	1	0		1	C2
•••					
document _n	1	0		0	C2

Method 2

Training data sets:

Method 2 with absoluate frequency:

	word ₁	word ₂	•••	word _m	Class
document ₁	0	3		1	C1
document ₂	2	0		3	C2
•••					
document _n	5	0		0	C2

Method 3

TF: term frequency

- Definition: TF = tij
- $\Box \quad \text{frequency of term } i \text{ in document } j$
- Purpose: makes the frequent words for the document more important
- IDF: inverted document frequency
- Definition: IDF = log(N/ni)
- ni : number of documents containing term i
- □ N : total number of documents
- TF-IDF value of a term i in document j
- Definition: $TF \times IDF = tij * log(N/ni)$

Text Processing

- Word (token) extraction
- Stop words removal
- Stemming
- Feature Selection

Text Processing

ARGENTINE 1986/87 GRAIN/OILSEED REGISTRATIONS BUENOS AIRES, Feb 26

- Argentine grain board figures show crop registrations of grains, oilseeds and their products to February 11, in thousands of tonnes, showing those for future shipments month, 1986/87 total and 1985/86 total to February 12, 1986, in brackets:
 - Bread wheat prev 1,655.8, Feb 872.0, March 164.6, total 2,692.4 (4,161.0). Maize Mar 48.0, total 48.0 (nil).

 - Sorghum nil (nil) Oilseed export registrations were:
 - Sunflowerseed total 15.0 (7.9)
 - Soybean May 20.0, total 20.0 (nil)
- The board also detailed export registrations for subproducts, as follows....

(argentine, 1986, 1987, grain, oilseed, registrations, buenos, aires, feb, 26, argentine, grain, board, figures, show, crop, registrations, of, grains, oilseeds, and, their, products, to, february, 11, in, ...

Common refinements: remove stopwords, stemming, collapsing multiple occurrences of words into one....

Word (token) extraction

Extract all the words in a document

Convert them into lower cases

Classifying Email into Acts

- From EMNLP-04, Learning to Classify Email into Speech Acts, Cohen-Carvalho-Mitchell
- An Act is described as a verb-noun pair (e.g., propose meeting, request information) - Not all pairs make sense. One single email message may contain multiple acts.
- Try to describe commonly observed behaviors, rather than all possible speech acts in English. Also include non-linguistic usage of email (e.g. delivery of files)

Classifying Email into Acts

Classifying Email into Acts

Symbol	Pattern	1-gram	3-gram
[number] [hour] [wwhh] [day] [day] [pm] [me] [person] [aaafter] [filetype]	any sequence of numbers [number]:[number] "why, where, who, what, or when" the strings "Monday, Tuesday,, or Sunday" the strings "Mon, Tue, Wed,, or Sun" the strings "P.M., PM, A.M. or AM" the pronouns "me, her, him, us or them" the pronouns "I, we, you, he, she or they" the strings "after, before or during" the strings ".docpdfppttxt. or .xls"	? [wwhh] could do can of [me]	[person] need to [wwhh] do [person] let [me] know would [person] do [person] think are [person] meeting could [person] please do [person] need
[7]			5-gram

Table 1: Some PreProcessing Substitution Patterns

[wwhh] do [person] think ? let [me] know [wwhh] [person] a call [number]-[number] give [me] a call [number] please give give [me] a call [person] would be able to take a look at it [person] think [person] need to

Word (token) extraction for Email

Request	Commit	Meeting
[wwhh] do [person] think	is good for [me]	[day] at [hour] [pm]
do [person] need to	is fine with [me]	on [day] at [hour]
and let [me] know	i will see [person]	[person] can meet at
call [number]-[number]	i think i can	[person] meet at [hour]
would be able to	i will put the	will be in the
[person] think [person] need	i will try to	is good for [me]
let [me] know [wwhh]	i will be there	to meet at [hour]
do [person] think ?	will look for [person]	at [hour] in the
[person] need to get	\$[number] per person	[person] will see [person]
? [person] need to	am done with the	meet at [hour] in
a copy of our	at [hour] i will	[number] at [hour] [pm]
do [person] have any	[day] is fine with	to go over the
[person] get a chance	each of us will	[person] will be in
[me] know [wwhh]	i will bring copies	let's plan to meet
that would be great	i will do the	meet at [hour] [pm]
dData	Propose	Deliver
 forwarded message begins 	person] would like to	forwarded message begins here
forwarded message begins here	would like to meet	[number] [number] [number] [number]
is in my public	please let [me] know	is good for [me]
in my public directory	to meet with [person]	if [person] have any
[person] have placed the	[person] meet at [hour]	if fine with me
please take a look	would [person] like to	in my public directory
[day] [hour] [number] [number]	[person] can meet tomorrow	[person] will try to
[number] [day] [number] [hour]	an hour or so	is in my public
[date] [day] [number] [day]	meet at [hour] in	will be able to
in our game directory	like to get together	just wanted to let
in the etc directory	[hour] [pm] in the	[pm] in the lobby
the file name is		person] will be able
	[after] [nour] or [after]	person win de adre
is in our game	[person] will be available	please take a look
is in our game fyi – forwarded message	[person] will be available think [person] can meet	please take a look can meet in the
is in our game fyi – forwarded message just put the file	[person] will be available think [person] can meet was hoping [person] could	please take a look can meet in the [day] at [hour] is

Stop words removal

- The most frequently used words in English
- Examples of stop words
- □ the, of, and, to, a, ...
- Typically about 400 to 500 such words
- Additional domain-specific stop words
- Stop words are usually removed

Stemming

- find the root/stem of a word
- Reduce the number of words
- Improve effectiveness of text classification
- For example:
- discussed
- □ discusses
- □ discussing
- □ Stem: discuss

Example Stemming Rules

Remove ending

If a word ends with s, preceded by a consonant other than an s, then delete the s.

Transform words

If a word ends with "ies" but not "eies" or "aies", then "ies" is replaced with "y".

Feature Selection

Selecting the "bag of words" to represent documents

Why do we need to select?

- Leaning program may not be able to handle all possible features
- Good features can result in higher accuracy

Feature Selection Methods

Class independent methods (Unsupervised)

- Document Frequency (DF)
- Term Strength (TS)

Class-dependent methods (Supervised)

- Information Gain (IG)
- Mutual Information (MI)
- \square X^2 statistic (CHI)

Document Frequency (DF)

Document frequency of a word

DF (w) = number of documents containing w

Advantages

- Can remove rare words (hence noise)
- Easy to compute

Disadvantages

- Class independent
- Some infrequent terms can be good discriminators, which cannot be selected by this method.

Information Gain

A measure of importance of the feature

The number of "bits of information" gained by knowing the word is present or absent

$$Gain(\omega) = -\sum_{i=1}^{k} P(C_i) \log P(C_i) + P(\omega) \sum_{i=1}^{k} P(C_i | \omega) \log P(C_i | \omega)$$
$$+ P(\overline{\omega}) \sum_{i=1}^{k} P(C_i | \overline{\omega}) \log P(C_i | \overline{\omega})$$

Rank the words according to their information gain value

Select the first m words with high gain values

Information Gain

Advantage

Consider the classes

Disadvantage

computationally expensive

Remove rare words (appears 1 or 2 times)

- reduce the amount of computation, and
- remove noisy words that have by-chance correlations with the classes.

What Do People Do In Practice?

Infrequent term removal

- infrequent across the whole collection (i.e. DF)
- met in a single document
- Most frequent term removal (i.e. removing stop words)

Stemming. (often)

Use a class-dependent method (e.g., the information gain method) to select features.

Naive Bayes

$$P(A|B) = P(B|A)P(A)P(B)$$

$$P(B|A) = P(A|B)P(B)P(B)P(A)$$
Prior probability
Likelihood
Posterior probability

- Represent document x as list of words w1,w2,...
- For each y, build a probabilistic model Pr(X | Y=y) of "documents" in class y
- To classify, find the y which was most likely to generate x—i.e., which gives x the best score according to Pr(x | y)

$$f(x) = \operatorname{argmax}_{y} \operatorname{Pr}(x|y) * \operatorname{Pr}(y)$$

How to estimate Pr(X | Y) ?

Simplest useful process to generate a bag of words:

- □ pick word 1 according to Pr(W | Y)
- repeat for word 2, 3,
- each word is generated independently of the others (which is clearly not true) but means

$$\Pr(w_1, ..., w_n \mid Y = y) = \prod_{i=1}^n \Pr(w_i \mid Y = y)$$

How to estimate Pr(W|Y)?

How to estimate Pr(X | Y) ?

$$\Pr(w_1, \dots, w_n \mid Y = y) = \prod_{i=1}^{n} \Pr(w_i \mid Y = y)$$

Estimate $\Pr(w|y)$ by looking at
the data...
$$\Pr(W = w \mid Y = y) = \frac{\operatorname{count}(W = w \text{ and } Y = y)}{\operatorname{count}(Y = y)}$$

This gives score of zero if x contains a brand-new word w_{new}

How to estimate Pr(X | Y) ?

$$\Pr(w_1, \dots, w_n \mid Y = y) = \prod_{i=1}^n \Pr(w_i \mid Y = y)$$

... and also imagine m
examples with $\Pr(w|y) = p$
$$\Pr(W = w \mid Y = y) = \frac{\operatorname{count}(W = w \text{ and } Y = y) + mp}{\operatorname{count}(Y = y) + m}$$

11

This Pr(W|Y) is a multinomial distribution
 This use of m and p is a Dirichlet prior for the multinomial

Putting this together:

 $\hfill\square$ for each document X_i with label y_i

for each word w_{ij} in x_i

- count[w_{ij}][y_i]++
- count[y_i]++
- count++

• to classify a new $x = W_1 \dots W_n$, pick y with top score:

$$score(y, w_1...w_k) = \lg \frac{\text{count}[y]}{\text{count}} + \sum_{i=1}^n \lg \frac{\text{count}[w_i][y] + 0.5}{\text{count}[y] + 1}$$

key point: we only need counts
for words that actually appear in *x*

Naïve Bayes for SPAM filtering

- □ Sahami et al, 1998
- Used bag of words, + special phrases ("FREE!") and + special features ("from *.edu", …)

Junk Precision

Naïve Bayes for SPAM filtering

	Classified Junk	Classified Legitimate	Total
Actually Junk	36 (92.0% precision)	9	45
Actually Legitimate	3	174 (95.0% precision)	177
Total	39	183	222

Naive Bayes Summary

Pros:

- Very fast and easy-to-implement
- Well-understood formally & experimentally

Cons:

- Seldom gives the very best performance
- \square "Probabilities" Pr(y | x) are not accurate

The Voted Perceptron

Training

Input:	a labeled training set $\langle (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_m, y_m) \rangle$
	number of epochs T
Output:	a list of weighted perceptrons $\langle (\mathbf{v}_1, c_1), \ldots, (\mathbf{v}_k, c_k) \rangle$

- Initialize: k := 0, $v_1 := 0$, $c_1 := 0$.
- Repeat T times:
 - For i = 1, ..., m:
 - * Compute prediction: $\hat{y} := \operatorname{sign}(\mathbf{v}_k \cdot \mathbf{x}_i)$

* If
$$\hat{y} = y$$
 then $c_k := c_k + 1$.
else $\mathbf{v}_{k+1} := \mathbf{v}_k + y_i \mathbf{x}_i$;
 $c_{k+1} := 1$;
 $k := k + 1$.

The Voted Perceptron

Prediction

Given: the list of weighted perceptrons: $\langle (\mathbf{v}_1, c_1), \dots, (\mathbf{v}_k, c_k) \rangle$ an unlabeled instance: **x**

compute a predicted label \hat{y} as follows:

$$s = \sum_{i=1}^{k} c_i \operatorname{sign}(\mathbf{v}_i \cdot \mathbf{x}); \quad \hat{y} = \operatorname{sign}(s) .$$

- Turney, ACL 2002
- Dataset: 410 reviews from Epinions
- Autos, Banks, Movies, Travel Destinations

Learning method:

- Extract 2-word phrases containing an adverb or adjective (eg "unpredictable plot")
- Classify reviews based on average Semantic Orientation

$$SO(phrase) = PMI(phrase, "excellent")$$
$$- PMI(phrase, "poor")$$
$$PMI(word_1, word_2) = \log_2 \left[\frac{p(word_1 \& word_2)}{p(word_1) p(word_2)} \right]$$

Computed using queries to web search engine

Extracted Phrase	Part-of-Speech	Semantic	
	Tags	Orientation	
online experience	JJ NN	2.253	
low fees	JJ NNS	0.333	
local branch	JJ NN	0.421	
small part	JJ NN	0.053	
online service	JJ NN	2.780	
printable version	JJ NN	-0.705	
direct deposit	JJ NN	1.288	
well other	RB JJ	0.237	
inconveniently	RB VBN	-1.541	
located			
other bank	JJ NN	-0.850	
true service	JJ NN	-0.732	
Average Semantic Or	ientation	0.322	

Table 5. The accuracy of the classification and the correlation of the semantic orientation with the star rating.

Domain of Review	Accuracy	Correlation
Automobiles	84.00 %	0.4618
Honda Accord	83.78 %	0.2721
Volkswagen Jetta	84.21 %	0.6299
Banks	80.00 %	0.6167
Bank of America	78.33 %	0.6423
Washington Mutual	81.67 %	0.5896
Movies	65.83 %	0.3608
The Matrix	66.67 %	0.3811
Pearl Harbor	65.00 %	0.2907
Travel Destinations	70.53 %	0.4155
Cancun	64.41 %	0.4194
Puerto Vallarta	80.56 %	0.1447
All	74.39 %	0.5174

Table 5. The accuracy of the classification and the correlation of the semantic orientation with the star rating.

Domain of Review	Accuracy	Correlation
Automobiles	84.00 %	0.4618
Honda Accord	83.78 %	0.2721
Volkswagen Jetta	84.21 %	0.6299
Banks	80.00 %	0.6167
Bank of America	78.33 %	0.6423
Washington Mutual	81.67 %	0.5896
Movies	65.83 %	0.3608
The Matrix	66.67 %	0.3811
Pearl Harbor	65.00 %	0.2907
Travel Destinations	70.53 %	0.4155
Cancun	64.41 %	0.4194
Puerto Vallarta	80.56 %	0.1447
All	74.39 %	0.5174

- Pang et al, EMNLP 2002
- 700 movie reviews (ie all in same domain); Naïve Bayes, MaxEnt, and linear SVMs; accuracy with different representations x for a document
- Interestingly, the off-the-shelf methods work well... perhaps better than Turney's method.

Classifying Movie Reviews

	Features	# of	frequency or	NB	ME	SVM
		features	presence?			
(1)	unigrams	16165	freq.	78.7	N/A	72.8
(2)	unigrams	77	pres.	81.0	80.4	82.9
(3)	unigrams+bigrams	32330	pres.	80.6	80.8	82.7
(4)	bigrams	16165	pres.	77.3	77.4	77.1
(5)	unigrams+POS	16695	pres.	81.5	80.4	81.9
(6)	adjectives	2633	pres.	77.0	77.7	75.1
(7)	top 2633 unigrams	2633	pres.	80.3	81.0	81.4
(8)	unigrams+position	22430	pres.	81.0	80.1	81.6

Classifying Movie Reviews

Assume the classifier is same form as Naïve Bayes, which can be written:

$$\Pr(y \mid w_1, w_2, ..., w_N) = \frac{1}{Z} \prod_i \lambda_i f(y, w_i)$$

Set weights (λ 's) to maximize probability of the training data: $\Pi Pr(y \mid x) + Pr(\lambda \mid 0)$

$$\prod_{(x_j, y_j) \in D} \Pr(y_j \mid x_j) + \Pr(\lambda \mid Q)$$

prior on parameters

MaxEnt classification

