
Calden Wloka

CSE6490, 23 March 2011



Review

Overview of program structure

Concurrency issues

Some results

Possible future extensions



Task 1:

See an object

Move to object

Pick up object

Move to home

Task 1:

See an object

Move to object

Pick up object

Move to home

Task 2:

Stack object

Task 2:

Stack object



problemMain

Create 

Petri Nets

Initialize object 

stack

Create and 

activate robot 

threads

cNode

inNodes

outNodes

cond

tNode

inNodes

outNodes

exTime

execute()

objectStack

numObjects

takeObject()

Robot

incState()

run()

log





Must maintain an accurate count of objects 

remaining to be delivered.

When cooperating, robot threads must not be 

able to advance from the condition to the 

action until all parties have entered the pre-

condition.



Used Semaphores to handle both cases.

Create a semaphore vector, 

S, with n elements for the 

action node.

When robot 1 arrives at the 

pre-condition, it produces 

(n-1) release calls to S(1), 

and then makes a single 

acquire call to S(2),...,S(n). 

Likewise with robots 2,...,n



 Looked at four different situations:

 A single robot 

 Two fully functional robots acting in parallel

 One functional, one damaged robot cooperating

 One functional, one damaged robot cooperating 

with timing shifted

Action: See 

Object

Move to 

Object

Pick up 

Object

Return

Home

Stack

Object

Standard: 50 300 150 300 100

Alternate: 100 100 250 100 250





Have multiple object stacks to collect from

 Prevents bottleneck at object source

 Increases complexity of object acquisition and 

determining robot thread end conditions

 Likely implemented using a tryAcquire loop over 

active (still containing objects) stacks

 Scale past two robots

 Increases complexity of determining robot thread 

end conditions

 Intelligently planned cooperation

 Increases network navigation complexity




