Concurrent Implementation of Skip Trees

Vladimir Magdin Feb 7 2011

Introduction

topic: alternate balanced tree data structure

outline: balanced search trees

 $\hat{\Gamma}$

skip lists

个

skip trees

Balanced Search Trees

- can represent ordered sets and dictionaries
- O(log(n)) for search, insert, delete operations
- two major types:
 - rotations of nodes (e.g. AVL tree)
 - splitting/merging of nodes (e.g. B-tree)

Balanced Search Trees

disadvantages

- rotations are complicated
 - implementation
 - constant factor: O(c log(n))
- order of insertions might matter

Skip Lists

- described by William Pugh in 1990
- hierarchy of lists with different degrees of connectivity
- levels of newly-inserted nodes are chosen randomly

Node Level Selection

- fraction p (e.g. 1/2) of the nodes at level(i) also have pointers at level(i+1)

Node Level Selection

- drawing level from the negative binomial distribution NB(1,p) leads to $O(log_{1/p}(n))$ search

Skip Lists

ADVANTAGES

- order of insertion does not matter
- easy to implement
- constant factor performance
 advantage over trees
- space efficient

DISADVANTAGES

- cannot be paginated efficiently
- insertion/deletion requires global search

skip lists can be re-envisioned as trees (Xavier Messeguer, 1997)

approach summary

- updater and rebalancer threads run in parallel
- several rebalancer threads can coexist
- percolate and split have local scope
- concurrent deletion is similar to insertion

Project Plan

- study the effects of
 - # of reader threads
 - # of updater threads
 - # of rebalancer threads

References

- 1. Xavier Messeguer. Skip trees, an alternative data structure to skip lists in a concurrent approach. RAIRO Theoretical Informatics and Applications, 31(3):251–269, May 1997.
- 2. Otto Nurmi and Eljas Soisalon-Soininen. Chromatic binary search trees: a structure for concurrent rebalancing. *Acta Informatica*, 31(6):547–557, September 1996.
- 3. William Pugh. Skip lists: A probabilistic alternative to balanced trees. Communications of the ACM, 33(6):668–676, June 1990.