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Overview
• Graph coloring revisited
• Sequential FF
• Parallel FF
• Generalized Parallel FF
• CSP example
• Impementation of Generalized Parallel FF explained
• Evaluation

• Performance
• Correctness
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Vertex coloring
• Assignment of "colors" to vertices in a so that no two 

adjacent vertices share the same color
• First-Fit is the simplest algorithm

• works by assigning the smallest possible integer as color to the 
current vertex of the graph
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http://en.wikipedia.org/wiki/Vertex_(graph_theory)�


Sequential FF
•
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Sequential FF E.g. Step 0
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Sequential FF E.g. Step 1
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Sequential FF E.g. Step 2
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Sequential FF E.g. Step 3
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Sequential FF E.g. Step 4
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Sequential FF E.g. Step 5
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Sequential FF E.g. Step 6
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Sequential FF E.g. Step 7

12



Sequential FF E.g. Step 8
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Parallel FF (Vertex Based)
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Disadvantage:
requires 
nvertices

= nprocessors



Generalized Parallel FF (Subgraph
Based)
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Colored using 
sequential algorithm



CSP explained using a simple example

16



Writer
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Reader
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Output
• Read: 2
• Read: 4
• Read: 6
• …
• Read: 100
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Class Diagram for FF Implementation
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Creating Parallel CSP Process
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Synchronization using CSP token passing
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Outside of csp
process, uses 
synch object

-1

If N doesn’t divide n,
The subgraphs have equal 
number of vertices except the 
last one which has less

top = get_bottom(identity+1)



Evaluation
• Time to generate graph was not counted

• Pre-generated for all trials
• 2,000 vertices and 999,001 edges

• On MTL
• For 1,4,8,12,16,20,24,28,32 cores

• For 1,4,8,12,16,20,24,28,32,64,128,140 threads
• For 12 iterations

• Took approx. 10 hours
• Iteration=0 not reported
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Obtained colors
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Speedup for nthreads=32;140
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Peak performance
• Was not reached due to 140 threads limitation on MTL 
• Single iteration on Laptop to investigate peak 

performance
• 4 cores with hyperthreading
• Intel Core i7 720QM @ 1.60GHZ
• 6Gb DDR3
• MS Windows 7 Pro 64-bit SP1

• Investigated

31

1132 2,1536,..,2,2=threadsn
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4 cores w/hyperthreading
Intel Core i7 720QM @ 1.60GHZ
6Gb DDR3
MS Windows 7 Pro 64-bit SP1

Decrease in performance  began 
between 64-128 threads

@64 threads, 8 of 224 colors 
(3.57%) were assigned using 
sequential algorithm
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Test for correctness
• Test cases created using viz tool introduced in 

assignment 1
• Helped greatly!

• All subgraph partitioning scenarios were tested too
• Graphs were picked to test all possible subgraph partitioning 

scenarios, E.g. 8 node graph:
• P1 → nodes 1-1, P2 → nodes 2-2,…, P8 → nodes 8-8
• P1 → nodes 1-2, P2 → nodes 3-4,…, P4 → nodes 7-8
• P1 → nodes 1-3, P2 → nodes 4-6, P3 → nodes 7-8, etc…

• Print statements and sorting the output alphabetically:
• System.out.println(“CSProccess id:”+identity+”,some test stuff”);
• I know it’s not the best way!
• Will try pathfinder in assignment 3
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Conclusion & Future Work
• Based on observation algorithm performs better when

• Consistent (to some extent) with Umland’s (1998) findings
• Modeling

• optimal nthreads should be predictable using
• ncores, nvertices, nedges, and possibly other variables
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Questions?
• References

• Thomas Umland. Parallel graph coloring using JAVA. In 
Architectures, Languages and Patterns for Parallel and Distributed 
Applications, pages 211–218. IOS Press, 1998.
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