
IMPLEMENTING PARALLEL
FIRST FIT GRAPH
COLORING IN JAVA

1

CSE 6490A Winter 2011
Loutfouz Zaman

Overview
• Graph coloring revisited
• Sequential FF
• Parallel FF
• Generalized Parallel FF
• CSP example
• Impementation of Generalized Parallel FF explained
• Evaluation

• Performance
• Correctness

2

Vertex coloring
• Assignment of "colors" to vertices in a so that no two

adjacent vertices share the same color
• First-Fit is the simplest algorithm

• works by assigning the smallest possible integer as color to the
current vertex of the graph

3

http://en.wikipedia.org/wiki/Vertex_(graph_theory)�

Sequential FF
•

4

Sequential FF E.g. Step 0

5

Sequential FF E.g. Step 1

6

Sequential FF E.g. Step 2

7

Sequential FF E.g. Step 3

8

Sequential FF E.g. Step 4

9

Sequential FF E.g. Step 5

10

Sequential FF E.g. Step 6

11

Sequential FF E.g. Step 7

12

Sequential FF E.g. Step 8

13

Parallel FF (Vertex Based)

14

Disadvantage:
requires
nvertices

= nprocessors

Generalized Parallel FF (Subgraph
Based)

15

Colored using
sequential algorithm

CSP explained using a simple example

16

Writer

17

Reader

18

Output
• Read: 2
• Read: 4
• Read: 6
• …
• Read: 100

19

Class Diagram for FF Implementation

20

Creating Parallel CSP Process

21

Synchronization using CSP token passing

22

23

Outside of csp
process, uses
synch object

-1

If N doesn’t divide n,
The subgraphs have equal
number of vertices except the
last one which has less

top = get_bottom(identity+1)

Evaluation
• Time to generate graph was not counted

• Pre-generated for all trials
• 2,000 vertices and 999,001 edges

• On MTL
• For 1,4,8,12,16,20,24,28,32 cores

• For 1,4,8,12,16,20,24,28,32,64,128,140 threads
• For 12 iterations

• Took approx. 10 hours
• Iteration=0 not reported

24

Obtained colors

25

26

27

threadscores

threadscores
nn

nnspeedup
,

1,1
, µ

µ
=

28

coresthreads nn ≤

29

Speedup for nthreads=32;140

30

Peak performance
• Was not reached due to 140 threads limitation on MTL
• Single iteration on Laptop to investigate peak

performance
• 4 cores with hyperthreading
• Intel Core i7 720QM @ 1.60GHZ
• 6Gb DDR3
• MS Windows 7 Pro 64-bit SP1

• Investigated

31

1132 2,1536,..,2,2=threadsn

32

4 cores w/hyperthreading
Intel Core i7 720QM @ 1.60GHZ
6Gb DDR3
MS Windows 7 Pro 64-bit SP1

Decrease in performance began
between 64-128 threads

@64 threads, 8 of 224 colors
(3.57%) were assigned using
sequential algorithm

33

Test for correctness
• Test cases created using viz tool introduced in

assignment 1
• Helped greatly!

• All subgraph partitioning scenarios were tested too
• Graphs were picked to test all possible subgraph partitioning

scenarios, E.g. 8 node graph:
• P1 → nodes 1-1, P2 → nodes 2-2,…, P8 → nodes 8-8
• P1 → nodes 1-2, P2 → nodes 3-4,…, P4 → nodes 7-8
• P1 → nodes 1-3, P2 → nodes 4-6, P3 → nodes 7-8, etc…

• Print statements and sorting the output alphabetically:
• System.out.println(“CSProccess id:”+identity+”,some test stuff”);
• I know it’s not the best way!
• Will try pathfinder in assignment 3

34

Conclusion & Future Work
• Based on observation algorithm performs better when

• Consistent (to some extent) with Umland’s (1998) findings
• Modeling

• optimal nthreads should be predictable using
• ncores, nvertices, nedges, and possibly other variables

35

coresthreads nn >

Questions?
• References

• Thomas Umland. Parallel graph coloring using JAVA. In
Architectures, Languages and Patterns for Parallel and Distributed
Applications, pages 211–218. IOS Press, 1998.

36

	Implementing Parallel First Fit Graph Coloring in Java
	Overview
	Vertex coloring
	Sequential FF
	Sequential FF E.g. Step 0
	Sequential FF E.g. Step 1
	Sequential FF E.g. Step 2
	Sequential FF E.g. Step 3
	Sequential FF E.g. Step 4
	Sequential FF E.g. Step 5
	Sequential FF E.g. Step 6
	Sequential FF E.g. Step 7
	Sequential FF E.g. Step 8
	Parallel FF (Vertex Based)
	Generalized Parallel FF (Subgraph Based)
	CSP explained using a simple example
	Writer
	Reader
	Output
	Class Diagram for FF Implementation
	Creating Parallel CSP Process
	Synchronization using CSP token passing
	Slide Number 23
	Evaluation
	Obtained colors
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Speedup for nthreads=32;140
	Peak performance
	Slide Number 32
	Slide Number 33
	Test for correctness
	Conclusion & Future Work
	Questions?

