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java.util.concurrent.locks

The package java.util.concurrent.locks contains the iterfaces
Condition
Lock
ReadWriteLock
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Lock

The interface Lock is implemented by the classes
ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

It provides more flexibility than synchronized methods and
synchronized blocks.
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Lock

The Lock interface contains the methods
lock(): acquire this lock
unlock(): release this lock
newCondition(): returns a condition variable bound this
lock

CSE 6490A



Lock chaining

Node parent = null;
Node node = this.getRoot();
node.lock()
while (!node.isLeaf())
{

parent = node;
node = node.getLeft();
node.lock();
parent.unlock();

}
node.unlock();
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Locks and Exceptions

Lock lock = ...;
lock.lock();
try
{

...
}
finally
{

lock.unlock();
}
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Condition

The Condition interface contains the methods
await(): causes the current thread to wait on this condition
signal(): wakes up one thread waiting on this condition
signalAll(): wakes up all threads waiting on this condition
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Condition

The interface Condition is implemented by the classes
AbstractQueuedLongSynchronizer.ConditionObject
AbstractQueuedSynchronizer.ConditionObject
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The producer-consumer problem

Problem
Implement the class BoundedBuffer and its methods put and
get using Locks and Conditions.
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ReadWriteLock

The interface ReadWriteLock contains the methods
readLock(): the lock used for reading
writeLock(): the lock used for writing
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ReadWriteLock

The interface ReadWriteLock is implemented by the class
ReentrantReadWriteLock.
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The readers-writers problem

Problem
Implement the class Database and its methods read and write
using ReadWriteLocks.
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