
Concurrent Object Oriented Languages
java.util.concurrent.locks

wiki.eecs.yorku.ca/course/6490A

CSE 6490A

wiki.eecs.yorku.ca/course/6490A


java.util.concurrent.locks

The package java.util.concurrent.locks contains the iterfaces
Condition
Lock
ReadWriteLock

CSE 6490A



Lock

The interface Lock is implemented by the classes
ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

It provides more flexibility than synchronized methods and
synchronized blocks.

CSE 6490A



Lock

The Lock interface contains the methods
lock(): acquire this lock
unlock(): release this lock
newCondition(): returns a condition variable bound this
lock

CSE 6490A



Lock chaining

Node parent = null;
Node node = this.getRoot();
node.lock()
while (!node.isLeaf())
{

parent = node;
node = node.getLeft();
node.lock();
parent.unlock();

}
node.unlock();

CSE 6490A



Locks and Exceptions

Lock lock = ...;
lock.lock();
try
{

...
}
finally
{

lock.unlock();
}

CSE 6490A



Condition

The Condition interface contains the methods
await(): causes the current thread to wait on this condition
signal(): wakes up one thread waiting on this condition
signalAll(): wakes up all threads waiting on this condition

CSE 6490A



Condition

The interface Condition is implemented by the classes
AbstractQueuedLongSynchronizer.ConditionObject
AbstractQueuedSynchronizer.ConditionObject

CSE 6490A



The producer-consumer problem

Problem
Implement the class BoundedBuffer and its methods put and
get using Locks and Conditions.

CSE 6490A



ReadWriteLock

The interface ReadWriteLock contains the methods
readLock(): the lock used for reading
writeLock(): the lock used for writing

CSE 6490A



ReadWriteLock

The interface ReadWriteLock is implemented by the class
ReentrantReadWriteLock.

CSE 6490A



The readers-writers problem

Problem
Implement the class Database and its methods read and write
using ReadWriteLocks.

CSE 6490A


