


 Designing experiments 
 Performing experiments in Java 
 Intel’s Manycore Testing Lab 





 High quality results that capture, e.g., 
› How an algorithm scales 
› Which of several algorithms performs best 

 Pretty graphs 
 
 
 
 

 Ability to explain behaviour on graphs 



 
 
 
 
 
 
 

 Authors did not explain negative scaling 
 There was a bug in their test setup 

Graph from a published paper Graph produced by re-running 
the authors’ experiments 



 Standardized benchmarks 
› Example: SPECjvm2008 – measuring the 

performance of Java runtime environments 
› Only exist for some problems 

 Macrobenchmarks 
› Replace an algorithm or data structure in a 

large software package 
› Perform experiments on the result 

 Microbenchmarks: apply randomized 
workloads to an algorithm or data structure 



 Goal: show how algorithms scale and/or 
perform relative to one another 

 Make graphs that plot performance 
versus number of concurrent threads 

 Each graph shows the result of 
one experiment 

 Each data point on a graph is an 
average of a set of randomized trials 



 Each thread: 
› Runs for a fixed length of time 
› Performs random operations according to 

some predefined probability distribution 
 E.g., 25% insertion, 25% deletion and 50% 

searching in a list 
› Records the number of operations 

completed in the allotted time 



 Each thread: 
› Performs M operations and then stop 
› Records the time when the last thread stops 

 In this type of trial, one thread can finish 
long after the others 

 This can make it seem like much more 
time is needed to perform M operations 



 Some algorithms and data structures will 
reach a steady state for some workloads 

 Example: consider a binary search tree T 
that stores keys in the range [0, 1000) 

 Suppose the expected workload is 
50% insertion and 50% deletion 

 In expectation, T will contain 500 keys 
after it has been in use for a long time 



 Example: consider a BST and a skip list 
that store keys in the range [0, 1000000) 

 Running 1 second trials with 
50% insertions and 50% deletions, we get: 

BST 

skip list 

95% confidence 
interval 



 Suppose we prefill the data structures to 
their steady states (~500,000 keys) 

 Then, running 1 second trials with 
50% insertions and 50% deletions, we get: 

Initially empty Initially in steady state 



 Consider an algorithm that: 
› Allocates a large amount of memory in the 

early stages of its execution 
› Then, simply reuses that memory (never 

allocating any more) 
 If trials are very short, then memory 

allocation overhead is large 
 However, in an infinite execution, the 

amortized cost of allocation is zero 



 Memory reclamation and deallocation 
 Processor cache occupancy 
 Experimental design 

› E.g., choice of workload 
(75% insertion & 25% deletion 
 has a different steady state than 
 50% insertion & 50% deletion) 

 Properties of algorithms / data structures 



 May have to run trials for a very long 
time to reach a steady state 

 Time constraints might prevent this 
 Goal: find a way to run short trials that 

give the same answers as long trials 
› Always sanity check by running some very 

long trials to see if the results are different 





Main thread 
 state = pending 
 Create & start threads 
 Wait on a barrier b 
 state = running 
 Sleep() for S seconds 
 state = done 
 Print #ops / S 

Every other thread 
 Perform initialization 
 Wait on barrier b 
 Wait until state == running 
 Loop 

› Perform random op 
› If state == done, 

then terminate 
 

 

 Problem: Sleep() might sleep for longer than S seconds 



Main thread 
 start = null 
 Create & start threads 
 Wait on a barrier b 
 start = System.nanoTime() 
 Sleep() for S seconds 
 end = System.nanoTime() 
 Print #ops / ((end-start)/109) 

 

Every other thread 
 Perform initialization 
 Wait on barrier b 
 Wait until start ≠ null 
 Loop 

› Perform random op 
› If end ≠ null then halt 

 Problem: if the main thread is context switched out after 
reading the current time, but before writing to start, then 
threads are timed while waiting start to be written 



Main thread 
 start = null 
 state = pending 
 Create & start threads 
 Wait on a barrier b 
 state = running 
 Wait for threads to halt 
 end = max{endp} 
 Print #ops / 

    ((end - start)/109) 

Every other thread p 
 Perform initialization 
 Wait on barrier b 
 Wait until state ≠ pending 
 startp = System.nanoTime() 
 CAS(start, null, startp) 

 Loop 
› Perform random operation 
› endp = System.nanoTime() 

› if endp – start > 109∙S then halt 

 Problem: endp can be much more than S seconds after 
start if p sleeps just before calling nanoTime 



Main thread 
 start = null 
 state = pending 
 Create & start threads 
 Wait on a barrier b 
 state = running 
 Wait for threads to halt 
 end = max{endp} 
 Print #ops / 

    ((end - start)/109) 

Every other thread p 
 Perform initialization 
 Wait on barrier b 
 Wait until state ≠ pending 
 startp = System.nanoTime() 
 CAS(start, null, startp) 

 Loop 
› Perform random operation 
› t = System.nanoTime() 

› if t – start > 109∙S then halt 
else endp = t 

 Lemma: endp is at most S seconds after start, and is 
captured between p’s last two operations. 

Good idea to call 
System.gc() here 

java.util.concurrent.CyclicBarrier 



 On Solaris, nanoTime performs a CAS, 
which can severely limit scaling 

 On Ubuntu, nanoTime has significant 
overhead, but affects scaling less 

Intel 4770, Ubuntu 14.04 Oracle T2+, Solaris 10 



 Create a dummy data structure with 
operations that do nothing 

 Measure its performance to check the 
overhead of your test harness 

 A low overhead test harness is vital when 
testing short, simple operations 



 If an algorithm’s performance is limited 
by the overhead of your experimental 
setup, it cannot be evaluated fairly! 

High overhead setup Low overhead setup 



 Trivial parallel algorithm: 
› divide a random matrix into equal parts, 

one for each thread 
› each thread counts odd entries in its part 

Counters: long count[n]; 
Thread i does: ++count[i]; 

Counters: long count[n*8]; 
Thread i does: ++count[i*8]; 



 Naïve arrays with one slot of private data 
per thread can cause contention! 
 
 
 

 When p1 writes to its slot, it invalidates 
the entire cache line on all CPU cores 

 Solution: only one slot per cache line 
 
› Requires much more space 

p1 p2 

p1 p2 p3 p4 p5 p6 p7 p8 

cache line 
(typically 64 bytes) 

cache line 

p3 … 



 Consider the following toy Java class: 
class SingleCell<K> { 
 K value; 
 boolean set(K key) { value = key; } 
} 

 How much memory is used by this code? 
 SingleCell<Integer> cell = new SingleCell<>(); 
 for (int i = 0; ; ++i) cell.set(i % 100); 

 When i%100 is passed to set(), an Integer 
object with the value i%100 is created 
› This is called auto boxing 
 

What is this type? 
Which type does 

set() require? 



 Running this code for 3 seconds produces 
more than 15GB of garbage Integer objects 
 
[GC (System.gc())  235929K->20378K(15073280K), 0.0165442 secs] 
[Full GC (System.gc())  20378K->20182K(15073280K), 0.1702617 secs] 
starting trial... 
[GC (Allocation Failure)  3952342K->20382K(15073280K), 0.0010818 secs] 
[GC (Allocation Failure)  3952542K->20286K(15073280K), 0.0006483 secs] 
[GC (Allocation Failure)  3952446K->20318K(15073280K), 0.0005037 secs] 
[GC (Allocation Failure)  3952478K->20350K(15073280K), 0.0006393 secs] 
finished trial... 
 

 Garbage collection notifications like this 
can (and should) be printed by running  
java –XX:+PrintGC MyProgram 

 Save it to a file instead with –Xloggc:my.log 



 Instead of creating a new Integer object 
each time an integer in the range [0, 99) is 
passed to set, we can reuse Integer objects 
 

Integer[] reuse = new Integer[100]; 
for (int i = 0; i < 100; ++i) reuse[i] = i; 
SingleCell<Integer> cell = new SingleCell<>(); 
for (int i = 0; ; ++i) cell.set(reuse[i % 100]); 

 



 The following graph shows how reusing 
Integer objects improves performance 

 The JVM heap is 256MB 
› A smaller heap makes auto boxing slower 



 The JVM accepts two arguments, 
–Xms and –Xmx, which specify minimum 
and maximum heap sizes, respectively 

 If these parameters are not specified, 
the JVM can resize the heap 
› In practice, JVMs frequently resize the heap 
› Since this may occur in some trials, and not 

in others, it is best to control this variable 



 When comparing algorithms that use lots 
of memory, heap size matters 

 It is important to think about whether 
comparisons should include or exclude 
memory reclamation cost 
 

Minimum and 
maximum 
heap size 



 Java compilation occurs throughout an 
execution (but mostly in the first few seconds) 

 This is important when comparing algorithms 
› Some algorithms take longer to compile, and stay 

in a slow, interpreted state for longer 
› This reduces their measured performance 

compared to faster compiling algorithms 
 One solution is to discard the first few trials of 

each experiment 



 For example, the following graph shows 
how the throughput for three data 
structures changes as they are compiled 
 
 
 
 
 
 

 Should discard trials 0-4 (maybe even 0-14) 



 Use a 64-bit JVM on a 64-bit machine 
 Use the -d64 and -server JVM flags 

› java -d64 -server MyProgram 

› The former enables 64-bit execution 
› The latter enables aggressive optimizations 

 These flags can change performance 
measurements significantly 
 



 

Without –d64 flag With –d64 flag 



 Multiple experiments run in the same JVM 
are not statistically independent 
› See “Statistically Rigorous Java Performance 

Evaluation” by Georges et al. 
 It is not enough to simply run garbage 

collection between each pair of trials 
 The internal state of the memory allocator, 

garbage collector and Hotspot compiler 
are largely inaccessible 



 Collect data on a per-thread basis to 
avoid synchronization 
› Create a private ThreadData object for 

each thread, containing private counters 
› Aggregate (Sum/Average/Min/Max) the 

data in these objects after a trial has ended 



 Output all per-thread data, and any 
useful debugging information (as long as 
this does not affect performance) 

 The extra output helps with debugging 
 Use Bash scripts to prune unwanted info 

 



 

PREFILL op# 1000000 sz=316497 expectedSize=500000 
PREFILL op# 2000000 sz=432205 expectedSize=500000 
PREFILL op# 3000000 sz=474889 expectedSize=500000 
finished prefilling to size 485001 for expected size 500000 
main thread: starting timer... 
main thread: attempting to join thread 0 
tid= 0: op# 1000000 
tid= 1: op# 1000000 
tid= 1: op# 2000000 
tid= 0: op# 2000000 
   ... 
main thread: joined thread 0 
main thread: attempting to join thread 1 
main thread: joined thread 1 
total insert succ             : 1095616 
total insert retry            : 1 
total erase succ              : 1095312 
total erase retry             : 2 
total find succ               : 8761970 
total find retry              : 0 
total succ insert+erase+find  : 10952898 
throughput (succ ops/sec)     : 3650966 
elapsed milliseconds          : 3000 



 
 

 Suppose $file contains the trial’s filename 
 For example, we can extract the 

throughput, using grep, cut and tr: 
 

› x=` grep "throughput" $file | cut –d":" –f2 | tr –d " " ` 
 

 We can also extract, e.g., the number of 
threads from the filename: 

 

› nthreads=` echo $file | cut -d"-" -f5 | tr -d "n" ` 

   ... 
total succ insert+erase+find  : 10952898 
throughput (succ ops/sec)     : 3650966 
elapsed milliseconds          : 3000 



 Avoid java.util.Random, which uses locks 
 Alternative Random implementation: 

 
 
 
 
 

 Create an instance of Random for each 
thread (with different seed values from, 
e.g., https://www.random.org/) 
 

public class Random 
    private int seed; 
    public Random (int seed) { this.seed = seed; } 
    public int nextInt() { 
        seed ^= seed << 6; 
        seed ^= seed >>> 21; 
        seed ^= seed << 7; 
        return seed; 
    } 
} 





 ssh indigo 

 ssh yufb-s##@207.108.8.131 

 (You must go through indigo, because 
all other IPs are rejected by MTL) 

 Copy MyFolder to your MTL home directory 
› scp -r MyFolder yufb-s##@207.108.8.131: 

 Copy MyFile to your MTL home directory 
› scp MyFile yufb-s##@@207.108.8.131: 



 javac -version 
› Eclipse Java Compiler v_677_R32x, 
3.2.1 release, Copyright IBM Corp 
2000, 2006. All rights reserved. 

 This is quite old, so make sure you use the 
versions of javac and java located in 
/opt/java/latest/bin/ 

 /opt/java/latest/bin/javac -version 
› javac 1.7.0_01 



 The number of threads each user can 
spawn is limited 

 If you spawn too many, Java will 
experience an internal error, and, in my 
experience, will refuse to terminate 

 Since you have exhausted your supply of 
threads, you will be unable to log in again 
or execute kill to stop your runaway JVM 

 After 24 hours your JVM will be auto-killed 



 If you do not want to experience this, 
you can first “reserve” a victim process 
› I run an extra SCP connection to MTL 
› If I need to free up a process, I terminate my 

SCP connection, which freeing up a process 
I can then use to run kill 

› The following command does the trick: 
 

for i in {1..9999}; do kill -9 $i; done 

 



 Control the set of processors that your 
application will use with taskset, e.g., 
› taskset 1-16 MyBenchmarkScript 

› MyBenchmarkScript will use only CPUs 1-16 
 Text editor on MTL: nano 
 SCP for Windows: WinSCP 
 SSH for Windows: PuTTY 
 Check who else is running on MTL: top 

http://winscp.net/eng/download.php
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html
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