


 Designing experiments 
 Performing experiments in Java 
 Intel’s Manycore Testing Lab 





 High quality results that capture, e.g., 
› How an algorithm scales 
› Which of several algorithms performs best 

 Pretty graphs 
 
 
 
 

 Ability to explain behaviour on graphs 



 
 
 
 
 
 
 

 Authors did not explain negative scaling 
 There was a bug in their test setup 

Graph from a published paper Graph produced by re-running 
the authors’ experiments 



 Standardized benchmarks 
› Example: SPECjvm2008 – measuring the 

performance of Java runtime environments 
› Only exist for some problems 

 Macrobenchmarks 
› Replace an algorithm or data structure in a 

large software package 
› Perform experiments on the result 

 Microbenchmarks: apply randomized 
workloads to an algorithm or data structure 



 Goal: show how algorithms scale and/or 
perform relative to one another 

 Make graphs that plot performance 
versus number of concurrent threads 

 Each graph shows the result of 
one experiment 

 Each data point on a graph is an 
average of a set of randomized trials 



 Each thread: 
› Runs for a fixed length of time 
› Performs random operations according to 

some predefined probability distribution 
 E.g., 25% insertion, 25% deletion and 50% 

searching in a list 
› Records the number of operations 

completed in the allotted time 



 Each thread: 
› Performs M operations and then stop 
› Records the time when the last thread stops 

 In this type of trial, one thread can finish 
long after the others 

 This can make it seem like much more 
time is needed to perform M operations 



 Some algorithms and data structures will 
reach a steady state for some workloads 

 Example: consider a binary search tree T 
that stores keys in the range [0, 1000) 

 Suppose the expected workload is 
50% insertion and 50% deletion 

 In expectation, T will contain 500 keys 
after it has been in use for a long time 



 Example: consider a BST and a skip list 
that store keys in the range [0, 1000000) 

 Running 1 second trials with 
50% insertions and 50% deletions, we get: 

BST 

skip list 

95% confidence 
interval 



 Suppose we prefill the data structures to 
their steady states (~500,000 keys) 

 Then, running 1 second trials with 
50% insertions and 50% deletions, we get: 

Initially empty Initially in steady state 



 Consider an algorithm that: 
› Allocates a large amount of memory in the 

early stages of its execution 
› Then, simply reuses that memory (never 

allocating any more) 
 If trials are very short, then memory 

allocation overhead is large 
 However, in an infinite execution, the 

amortized cost of allocation is zero 



 Memory reclamation and deallocation 
 Processor cache occupancy 
 Experimental design 

› E.g., choice of workload 
(75% insertion & 25% deletion 
 has a different steady state than 
 50% insertion & 50% deletion) 

 Properties of algorithms / data structures 



 May have to run trials for a very long 
time to reach a steady state 

 Time constraints might prevent this 
 Goal: find a way to run short trials that 

give the same answers as long trials 
› Always sanity check by running some very 

long trials to see if the results are different 





Main thread 
 state = pending 
 Create & start threads 
 Wait on a barrier b 
 state = running 
 Sleep() for S seconds 
 state = done 
 Print #ops / S 

Every other thread 
 Perform initialization 
 Wait on barrier b 
 Wait until state == running 
 Loop 

› Perform random op 
› If state == done, 

then terminate 
 

 

 Problem: Sleep() might sleep for longer than S seconds 



Main thread 
 start = null 
 Create & start threads 
 Wait on a barrier b 
 start = System.nanoTime() 
 Sleep() for S seconds 
 end = System.nanoTime() 
 Print #ops / ((end-start)/109) 

 

Every other thread 
 Perform initialization 
 Wait on barrier b 
 Wait until start ≠ null 
 Loop 

› Perform random op 
› If end ≠ null then halt 

 Problem: if the main thread is context switched out after 
reading the current time, but before writing to start, then 
threads are timed while waiting start to be written 



Main thread 
 start = null 
 state = pending 
 Create & start threads 
 Wait on a barrier b 
 state = running 
 Wait for threads to halt 
 end = max{endp} 
 Print #ops / 

    ((end - start)/109) 

Every other thread p 
 Perform initialization 
 Wait on barrier b 
 Wait until state ≠ pending 
 startp = System.nanoTime() 
 CAS(start, null, startp) 

 Loop 
› Perform random operation 
› endp = System.nanoTime() 

› if endp – start > 109∙S then halt 

 Problem: endp can be much more than S seconds after 
start if p sleeps just before calling nanoTime 



Main thread 
 start = null 
 state = pending 
 Create & start threads 
 Wait on a barrier b 
 state = running 
 Wait for threads to halt 
 end = max{endp} 
 Print #ops / 

    ((end - start)/109) 

Every other thread p 
 Perform initialization 
 Wait on barrier b 
 Wait until state ≠ pending 
 startp = System.nanoTime() 
 CAS(start, null, startp) 

 Loop 
› Perform random operation 
› t = System.nanoTime() 

› if t – start > 109∙S then halt 
else endp = t 

 Lemma: endp is at most S seconds after start, and is 
captured between p’s last two operations. 

Good idea to call 
System.gc() here 

java.util.concurrent.CyclicBarrier 



 On Solaris, nanoTime performs a CAS, 
which can severely limit scaling 

 On Ubuntu, nanoTime has significant 
overhead, but affects scaling less 

Intel 4770, Ubuntu 14.04 Oracle T2+, Solaris 10 



 Create a dummy data structure with 
operations that do nothing 

 Measure its performance to check the 
overhead of your test harness 

 A low overhead test harness is vital when 
testing short, simple operations 



 If an algorithm’s performance is limited 
by the overhead of your experimental 
setup, it cannot be evaluated fairly! 

High overhead setup Low overhead setup 



 Trivial parallel algorithm: 
› divide a random matrix into equal parts, 

one for each thread 
› each thread counts odd entries in its part 

Counters: long count[n]; 
Thread i does: ++count[i]; 

Counters: long count[n*8]; 
Thread i does: ++count[i*8]; 



 Naïve arrays with one slot of private data 
per thread can cause contention! 
 
 
 

 When p1 writes to its slot, it invalidates 
the entire cache line on all CPU cores 

 Solution: only one slot per cache line 
 
› Requires much more space 

p1 p2 

p1 p2 p3 p4 p5 p6 p7 p8 

cache line 
(typically 64 bytes) 

cache line 

p3 … 



 Consider the following toy Java class: 
class SingleCell<K> { 
 K value; 
 boolean set(K key) { value = key; } 
} 

 How much memory is used by this code? 
 SingleCell<Integer> cell = new SingleCell<>(); 
 for (int i = 0; ; ++i) cell.set(i % 100); 

 When i%100 is passed to set(), an Integer 
object with the value i%100 is created 
› This is called auto boxing 
 

What is this type? 
Which type does 

set() require? 



 Running this code for 3 seconds produces 
more than 15GB of garbage Integer objects 
 
[GC (System.gc())  235929K->20378K(15073280K), 0.0165442 secs] 
[Full GC (System.gc())  20378K->20182K(15073280K), 0.1702617 secs] 
starting trial... 
[GC (Allocation Failure)  3952342K->20382K(15073280K), 0.0010818 secs] 
[GC (Allocation Failure)  3952542K->20286K(15073280K), 0.0006483 secs] 
[GC (Allocation Failure)  3952446K->20318K(15073280K), 0.0005037 secs] 
[GC (Allocation Failure)  3952478K->20350K(15073280K), 0.0006393 secs] 
finished trial... 
 

 Garbage collection notifications like this 
can (and should) be printed by running  
java –XX:+PrintGC MyProgram 

 Save it to a file instead with –Xloggc:my.log 



 Instead of creating a new Integer object 
each time an integer in the range [0, 99) is 
passed to set, we can reuse Integer objects 
 

Integer[] reuse = new Integer[100]; 
for (int i = 0; i < 100; ++i) reuse[i] = i; 
SingleCell<Integer> cell = new SingleCell<>(); 
for (int i = 0; ; ++i) cell.set(reuse[i % 100]); 

 



 The following graph shows how reusing 
Integer objects improves performance 

 The JVM heap is 256MB 
› A smaller heap makes auto boxing slower 



 The JVM accepts two arguments, 
–Xms and –Xmx, which specify minimum 
and maximum heap sizes, respectively 

 If these parameters are not specified, 
the JVM can resize the heap 
› In practice, JVMs frequently resize the heap 
› Since this may occur in some trials, and not 

in others, it is best to control this variable 



 When comparing algorithms that use lots 
of memory, heap size matters 

 It is important to think about whether 
comparisons should include or exclude 
memory reclamation cost 
 

Minimum and 
maximum 
heap size 



 Java compilation occurs throughout an 
execution (but mostly in the first few seconds) 

 This is important when comparing algorithms 
› Some algorithms take longer to compile, and stay 

in a slow, interpreted state for longer 
› This reduces their measured performance 

compared to faster compiling algorithms 
 One solution is to discard the first few trials of 

each experiment 



 For example, the following graph shows 
how the throughput for three data 
structures changes as they are compiled 
 
 
 
 
 
 

 Should discard trials 0-4 (maybe even 0-14) 



 Use a 64-bit JVM on a 64-bit machine 
 Use the -d64 and -server JVM flags 

› java -d64 -server MyProgram 

› The former enables 64-bit execution 
› The latter enables aggressive optimizations 

 These flags can change performance 
measurements significantly 
 



 

Without –d64 flag With –d64 flag 



 Multiple experiments run in the same JVM 
are not statistically independent 
› See “Statistically Rigorous Java Performance 

Evaluation” by Georges et al. 
 It is not enough to simply run garbage 

collection between each pair of trials 
 The internal state of the memory allocator, 

garbage collector and Hotspot compiler 
are largely inaccessible 



 Collect data on a per-thread basis to 
avoid synchronization 
› Create a private ThreadData object for 

each thread, containing private counters 
› Aggregate (Sum/Average/Min/Max) the 

data in these objects after a trial has ended 



 Output all per-thread data, and any 
useful debugging information (as long as 
this does not affect performance) 

 The extra output helps with debugging 
 Use Bash scripts to prune unwanted info 

 



 

PREFILL op# 1000000 sz=316497 expectedSize=500000 
PREFILL op# 2000000 sz=432205 expectedSize=500000 
PREFILL op# 3000000 sz=474889 expectedSize=500000 
finished prefilling to size 485001 for expected size 500000 
main thread: starting timer... 
main thread: attempting to join thread 0 
tid= 0: op# 1000000 
tid= 1: op# 1000000 
tid= 1: op# 2000000 
tid= 0: op# 2000000 
   ... 
main thread: joined thread 0 
main thread: attempting to join thread 1 
main thread: joined thread 1 
total insert succ             : 1095616 
total insert retry            : 1 
total erase succ              : 1095312 
total erase retry             : 2 
total find succ               : 8761970 
total find retry              : 0 
total succ insert+erase+find  : 10952898 
throughput (succ ops/sec)     : 3650966 
elapsed milliseconds          : 3000 



 
 

 Suppose $file contains the trial’s filename 
 For example, we can extract the 

throughput, using grep, cut and tr: 
 

› x=` grep "throughput" $file | cut –d":" –f2 | tr –d " " ` 
 

 We can also extract, e.g., the number of 
threads from the filename: 

 

› nthreads=` echo $file | cut -d"-" -f5 | tr -d "n" ` 

   ... 
total succ insert+erase+find  : 10952898 
throughput (succ ops/sec)     : 3650966 
elapsed milliseconds          : 3000 



 Avoid java.util.Random, which uses locks 
 Alternative Random implementation: 

 
 
 
 
 

 Create an instance of Random for each 
thread (with different seed values from, 
e.g., https://www.random.org/) 
 

public class Random 
    private int seed; 
    public Random (int seed) { this.seed = seed; } 
    public int nextInt() { 
        seed ^= seed << 6; 
        seed ^= seed >>> 21; 
        seed ^= seed << 7; 
        return seed; 
    } 
} 





 ssh indigo 

 ssh yufb-s##@207.108.8.131 

 (You must go through indigo, because 
all other IPs are rejected by MTL) 

 Copy MyFolder to your MTL home directory 
› scp -r MyFolder yufb-s##@207.108.8.131: 

 Copy MyFile to your MTL home directory 
› scp MyFile yufb-s##@@207.108.8.131: 



 javac -version 
› Eclipse Java Compiler v_677_R32x, 
3.2.1 release, Copyright IBM Corp 
2000, 2006. All rights reserved. 

 This is quite old, so make sure you use the 
versions of javac and java located in 
/opt/java/latest/bin/ 

 /opt/java/latest/bin/javac -version 
› javac 1.7.0_01 



 The number of threads each user can 
spawn is limited 

 If you spawn too many, Java will 
experience an internal error, and, in my 
experience, will refuse to terminate 

 Since you have exhausted your supply of 
threads, you will be unable to log in again 
or execute kill to stop your runaway JVM 

 After 24 hours your JVM will be auto-killed 



 If you do not want to experience this, 
you can first “reserve” a victim process 
› I run an extra SCP connection to MTL 
› If I need to free up a process, I terminate my 

SCP connection, which freeing up a process 
I can then use to run kill 

› The following command does the trick: 
 

for i in {1..9999}; do kill -9 $i; done 

 



 Control the set of processors that your 
application will use with taskset, e.g., 
› taskset 1-16 MyBenchmarkScript 

› MyBenchmarkScript will use only CPUs 1-16 
 Text editor on MTL: nano 
 SCP for Windows: WinSCP 
 SSH for Windows: PuTTY 
 Check who else is running on MTL: top 

http://winscp.net/eng/download.php
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html

	Java Experiments on MTL
	Outline
	Designing experiments
	Designing experiments: the goal
	Explaining behaviour is important
	Common experimental setups
	Performing microbenchmarks
	A typical trial for a data structure
	A poorly designed trial
	Steady states
	Steady states are important
	Steady states are important
	Memory allocation affects the steady state
	Other steady state factors
	Reaching a steady state
	Performing experiments in Java
	Running an experiment – attempt 1
	Running an experiment – attempt 2
	Running an experiment – attempt 3
	Running an experiment – attempt 4
	Cost of nanoTime varies
	Experimental setup overhead
	Why overhead matters
	False sharing
	False sharing
	Be careful with auto boxing
	Boxing is expensive
	A space efficient alternative
	The impact on performance
	The JVM heap and resizing
	Results depend on heap size
	Hot-spot compilation
	Hot-spot compilation - 2
	Runtime flags for the JVM
	Impact of the –d64 flag
	Run each data point in a separate JVM
	Recording data in a trial�(e.g., number of operations completed)
	Output for each trial
	Example output file for a trial:�perf-i10-d10-k1000000-n2-t3000-trial4.csv
	Using Bash to get results from trial file:�perf-i10-d10-k1000000-n2-t3000-trial4.csv
	Source of randomness
	Intel’s Multicore Testing Lab
	Logging in to MTL
	Path to java and javac
	Do not spawn too many threads
	Premeditated killing
	Miscellanea

