Java Experiments on MTL
From past mistakes 1o best practices

Trevor I[@Wﬂ
PhD student at U of T
tabrown@ cs.uforonto.ca

Qutline

© Designing experiments
© Performing experiments in Java
© Intel’s Manycore Testing Lab

Designing experiments

High quality results that capture, e.g.,
How an algorithm scales
Which of several algorithms performs best

Pretty graphs

20% INs, 10% DEL, 70% GET

]
=]
xR
(=]
n
w
£
®
=)
[Ty]

=
o = N W R WU G N W O

Ability to explain behaviour on grap hs

Graph from a published paper Graph produced by re-running

the authors’ experiments

1 2 3 45 6 7 8 9 10 11 12 13 14 15 16
number of threads

Authors did not explain negative scallng

There was a bug in their test setup \
s

Standardized benchmarks

Example: SPECjvm2008 — measuring the
performance of Java runtime environments

Only exist for some problems

Macrobenchmarks

Replace an algorithm or data structure in a
large software package

Perform experiments on the result

Microbenchmarks: apply randomized
workloads to an algorithm or data structure

Goal: show how algorithms scale and/or
perform relative to one another

Make graphs that plot performance
versus number of concurrent threads

Each graph shows the result of
one experiment

Each data point on a graph is an
average of a set of randomized trials

Each thread.:
Runs for a fixed length of time

Performs random operations according to
some predefined probabillity distribution

E.g., 25% insertion, 25% deletion and 50%
searching in a list

Records the number of operations
completed in the allotted time

Each thread.:
Performs M operations and then stop
Records the time when the last thread stops

In this type of trial, one thread can finish
long after the others

This can make it seem like much more
time Is needed to perform M operations

Some algorithms and data structures will
reach a steady state for some workloads

Example: consider a binary search tree T
that stores keys in the range [0, 1000)

Suppose the expected workload is
50% Insertion and 50% deletion

In expectation, T will contain 500 keys
after it has been in use for a long time

Example: consider a BST and a skip list
that store keys in the range [0, 1000000)

Running 1 second trials with
50% Iinsertions and 50% deletions, we get:

95% confidence
Interval

[y

Millions

——* skip list

\

0

9

8

7

6

o

N
/

L~

2

1

0

N
~
w
D
w
[o)]
~

Suppose we prefill the data structures to
their steady states (~500,000 keys)

Then, running 1 second trials with
50% Iinsertions and 50% deletions, we get:

Initially empty Initially in steady state

[ury
[ury

\

Millions
Millions

!I

\ |\

0

9

8

7

S =~

5 ~

Tz
/

I ;

A

2

1

0

Consider an algorithm that:

Allocates a large amount of memory in the
early stages of its execution

Then, simply reuses that memory (never
allocating any more)
If trials are very short, then memory
allocation overhead is large

However, in an infinite execution, the
amortized cost of allocation is zero

Memory reclamation and deallocation
Processor cache occupancy

Experimental design

E.g., choice of workload

(75% insertion & 25% deletion

has a different steady state than
50% insertion & 50% deletion)

Properties of algorithms / data structures

May have to run trials for a very long
time to reach a steady state

Time constraints might prevent this

Goal: find a way to run short trials that
give the same answers as long trials

Always sanity check by running some very
long trials to see If the results are different

Performing experiments in Java

Main thread

state = pending
Create & start threads
Wait on a barrier b
state = running
Sleep() for S seconds
state = done

Print #0ps / S

Every other thread

Perform initialization
Wait on batrrier b
Wait until state == running
Loop
Perform random op

If state == done,
then terminate

Problem: Sleep() might sleep for longer than S seconds

Main thread Every other thread
start = null Perform initialization
Create & start threads Wait on barrier b
Wait on a barrier b Wait until start # null
start = System.nanoTime() Loop
Sleep() for S seconds Perform random op
end = System.nanoTime() If end # null then halt
Print #ops / ((end-start)/109)

Problem: if the main thread is context switched out after
reading the current time, but before writing to start, then
threads are timed while waiting start to be ertten

Main thread Every other thread p
start = null Perform initialization
state = pending Wait on barrier b
Create & start threads Wait until state # pending
Wait on a barrier b start, = System.nanoTime()
state = running CAS(start, null, start,)
Wait for threads to halt Loop
end = max{end} Perform random operation
Print #ops / end, = System.nanoTime()
((end - start)/10%) if end, - start > 1"09-3 then halt

Problem: end can be much more than S seconds after
startif p sIeeps just before calling nanoTime

Good idea to call
System.gc() here

|
Main thiead | Eve [y
start = null Perform initialization
state = pending Wait on barrier b
Crecate & start threads Wait until state # pending
Wait on a barrier b start, = System.nanoTime()
state = running CAS(start, null, start,)
Wait for threads to halt Loop
end = max{end} Perforrn“ra\xndom operation
Print #ops / t = System. n\\anoTime()
((end - start)/10°) if t — start > 10%-S then halt
else end, =t N

Lemma: end IS at most S seconds after start, and |s
captured between p’s last two operatlopg

On Solaris, nanoTime performs a CAS,
which can severely limit scaling

On Ubuntu, nanoTime has significant
overhead, but affects scaling less

Intel 4770, Ubuntu 14.04 Oracle T2+, Solaris 10

—m—check time every 50 iterations —+—check time every iteration

Create a dummy data structure with
operations that do nothing

Measure its performance to check the
overhead of your test harness

A low overhead test harness Is vital when
testing short, simple operations

If an algorithm’s performance is limited
by the overhead of your experimental
setup, it cannot be evaluated fairly!

High overhead setup Low overhead setup

c £
5 §
3 =

Trivial parallel algorithm:

divide a random matrix into equal parts,
one for each thread

each thread counts odd entries in its part

Counters: long count[n]; Counters: long count[n*8];
Thread i does: ++count[i]; Thread i does: ++count[1*8];

Speedup ower 1-thresd baseline
" =]

2
&
A
ki
5
&
ie

Naive arrays with one slot of private data
per thread can cause contention!

Pr P2 Ps Psa Ps Ps P7 Ps

cache line cache line
(typically 64 bytes)

When p, writes to its slot, it invalidates
the entire cache line on all CPU cores

Solution: only one slot per cache line

P: P2 P -

Requires much more space

Consider the following toy Java class:
class SingleCell<K> {

K value;

boolean set(K key) { value = key; }

}

How much memory is used by this code?
SingleCell<Integer> cell = new SinaleCell<>();
for (int 1 = 0; ; ++1) cell.set(1 % 100);

When i%100 is passed to set(), an Integer

object with the value %100 is createa

.. . What is this type?
This is called auto boxing which type?c)) o

set() require?

Running this code for 3 seconds produces
more than 15GB of garbage Integer objects

[GC (System.gc()) 235929K->20378K(15073280K), 0.0165442 secs]
[Full GC (System.gc()) 20378K->20182K(15073280K), 0.1702617 secs]
starting trial...

[GC (Allocation
[GC (Allocation
[GC (Allocation
[GC (Allocation

Failure)
Failure)
Failure)
Failure)

finished trial...

3952342K->20382K(15073280K), 0.0010818 secs]
3952542K->20286K(15073280K), 0.0006483 secs]
3952446K->20318K(15073280K), 0.0005037 secs]
3952478K->20350K(15073280K), 0.0006393 secs]

Garbage collection notifications like this

can (and should) be printed by runnmg
Java —XX:+PrintGC MyProgram .

Save it to a file instead with —Xloggc:my. Iog

Instead of creating a new Integer object
each time an integer in the range [0, 99) is
passed to set, we can reuse Integer objects

Integer[] reuse = new Integer[100];

for (ant 1 = 0; 1 < 100; ++1) reuse|[1] = 1;
SingleCell<Integer> cell = new SingleCell<>();
for (aint 1 = 0; ; ++1) cell.set(reuse|[1 % 100]);

The following graph shows how reusing
Integer objects improves performance

The JVM heap is 256 MB
A smaller heap makes auto boxing slower

The JVM accepts two arguments,
—Xms and -Xmx, which specify minimum
and maximum heap sizes, respectively

If these parameters are not specified,
the JVM can resize the heap

In practice, JVMs frequently resize the heap

Since this may occur in some trials, and not
In others, it is best to control this variable

When comparing algorithms that use lots
of memory, heap size matters

It Is Important to think about whether
comparisons should include or exclude
memory reclamation cost

1
1

, 13
£ 12
=1
Z 10
]
8
7
6
5
4
3
2
1
0

Minimum and
maximum

heap size

Java compilation occurs throughout an
execution (but mostly in the first few seconds)

This Is Important when comparing algorithms

Some algorithms take longer to compile, and stay
In a slow, interpreted state for longer

This reduces their measured performance
compared to faster compiling algorithms

One solution i1s to discard the first few trials of
each experiment

For example, the following graph shows
how the throughput for three data
structures changes as they are compiled

SN 9l a W, aulniniihb.odulislin =
2 -H"ﬂ‘-!_“—‘"’ _/

g
| o
Q
|8
Q
W
| .
Q
o
W
c

0
]
o
Q
o
o

0123456 7 8 910111213141516 17 1819 202122 232425 |
trial number

Should discard trials 0-4 (maybe even 0- 14)

Use a 64-bit JVM on a 64-bit machine

Use the -d64 and -server JVM flags
Jjava -d64 -server MyProgram
The former enables 64-bit execution
The latter enables aggressive optimizations

These flags can change performance
measurements significantly

With —-d64 flag

_.,W

3] o =r] =]

w =t o~ o]
— — — —

suol|jIN

Without —d64 flag

/,
\
\
_.V

o~ o ca [¥a] =t o D
— —

SuoIA

Multiple experiments run in the same JVM
are not statistically independent
See “Statistically Rigorous Java Performance
Evaluation” by Georges et al.

It Is not enough to simply run garbage
collection between each pair of trials

The internal state of the memory allocator,
garbage collector and Hotspot compller
are largely inaccessible

Collect data on a per-thread basis to
avoid synchronization

Create a private ThreadData object for
each thread, containing private counters

Aggregate (Sum/Average/Min/Max) the
data in these objects after a trial has ended

Output all per-thread data, and any

useful debugging information (as long as
this does not affect performance)

The extra output helps with debugging
Use Bash scripts to prune unwanted info

PREFILL op# 1000000 sz=316497 expectedSize=500000

PREFILL op# 2000000 sz=432205 expectedSize=500000

PREFILL op# 3000000 sz=474889 expectedSize=500000

finished prefilling to size 485001 for expected size 500000
main thread: starting timer...

main thread: attempting to join thread O

tid= O0: op# 1000000

tid= 1: op# 1000000

tid= 1: op# 2000000

tid= O0: op# 2000000

main thread: joined thread O

main thread: attempting to join thread 1
main thread: joined thread 1

total insert succ - 1095616

total iInsert retry -1

total erase succ - 1095312

total erase retry » 2

total find succ - 8761970

total find retry - 0

total succ insertt+erase+find : 10952898
throughput (succ ops/sec) - 3650966

elapsed milliseconds - 3000

total succ Insert+erase+find : 10952898

throughput (succ ops/sec) - 3650966
elapsed milliseconds - 3000

Suppose %$file contains the trial’s flename

For example, we can extract the
throughput, using grep, cut and tr:

~

x=" grep "throughput"™ $file | cut —d":" -2 | tr —d ™ ™

We can also extract, e.qg., the number of
threads from the filename:

nthreads=" echo $file | cut -d"-" -f5 | tr -d "'n" ~

Avoid java.uti.Random, which uses locks
Alternative Random implementation:

public class Random
private int seed;
public Random (int seed) { this.seed = seed; }
public int nextInt() {
seed "= seed << 6;

seed M= seed >>> 21;
seed "= seed << 7;
return seed;

Create an instance of Random for each
thread (with different seed values from,
e.g., https:.//www.random.org/)

Intel’s Multicore Testing Lab

ssh 1ndigo
ssh yufb-s##0207.108.8.131

(You must go through indigo, because
all other IPs are rejected by MTL)

Copy MyFolder to your MTL home directory
scp -r MyFolder yufb-s##®207.108.8.131:

Copy MyFile to your MTL home dlrectory
scp MyFile yufb-s##0@207.108.8.131:

javac -version

Eclipse Java Compiler v_677 R32x,
3.2.1 release, Copyright I1BM Corp
2000, 2006. All rights reserved.

This Is quite old, so make sure you use the
versions of Javac and java located in

/opt/java/latest/bin/

/opt/java/latest/bin/javac —ver5|on
Javac 1.7.0 01 >

The number of threads each user can
spawn is limited

If you spawn too many, Java will
experience an internal error, and, in my
experience, will refuse to terminate

Since you have exhausted your supply of
threads, you will be unable to log in again
or execute Kkill to stop your runaway JVM

After 24 hours your JVM will be auto-kil“l“d\

If you do not want to experience this,
you can first “reserve’” a victim process

| run an extra SCP connection to MTL

If | need to free up a process, | terminate my
SCP connection, which freeing up a process
| can then use to run Kill

The following command does the trick:
for i in {1..9999}; do kill -9 $i; done

Control the set of processors that your
application will use with taskset, e.qg.,

taskset 1-16 MyBenchmarkScript
MyBenchmarkScript will use only CPUs 1-16
Text editor on MTL: nano
SCP for Windows:

SSH for Windows:
Check who else Is running on MTL: tp

http://winscp.net/eng/download.php
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html

	Java Experiments on MTL
	Outline
	Designing experiments
	Designing experiments: the goal
	Explaining behaviour is important
	Common experimental setups
	Performing microbenchmarks
	A typical trial for a data structure
	A poorly designed trial
	Steady states
	Steady states are important
	Steady states are important
	Memory allocation affects the steady state
	Other steady state factors
	Reaching a steady state
	Performing experiments in Java
	Running an experiment – attempt 1
	Running an experiment – attempt 2
	Running an experiment – attempt 3
	Running an experiment – attempt 4
	Cost of nanoTime varies
	Experimental setup overhead
	Why overhead matters
	False sharing
	False sharing
	Be careful with auto boxing
	Boxing is expensive
	A space efficient alternative
	The impact on performance
	The JVM heap and resizing
	Results depend on heap size
	Hot-spot compilation
	Hot-spot compilation - 2
	Runtime flags for the JVM
	Impact of the –d64 flag
	Run each data point in a separate JVM
	Recording data in a trial�(e.g., number of operations completed)
	Output for each trial
	Example output file for a trial:�perf-i10-d10-k1000000-n2-t3000-trial4.csv
	Using Bash to get results from trial file:�perf-i10-d10-k1000000-n2-t3000-trial4.csv
	Source of randomness
	Intel’s Multicore Testing Lab
	Logging in to MTL
	Path to java and javac
	Do not spawn too many threads
	Premeditated killing
	Miscellanea

