

 Designing experiments
 Performing experiments in Java
 Intel’s Manycore Testing Lab

 High quality results that capture, e.g.,
› How an algorithm scales
› Which of several algorithms performs best

 Pretty graphs

 Ability to explain behaviour on graphs

 Authors did not explain negative scaling
 There was a bug in their test setup

Graph from a published paper Graph produced by re-running
the authors’ experiments

 Standardized benchmarks
› Example: SPECjvm2008 – measuring the

performance of Java runtime environments
› Only exist for some problems

 Macrobenchmarks
› Replace an algorithm or data structure in a

large software package
› Perform experiments on the result

 Microbenchmarks: apply randomized
workloads to an algorithm or data structure

 Goal: show how algorithms scale and/or
perform relative to one another

 Make graphs that plot performance
versus number of concurrent threads

 Each graph shows the result of
one experiment

 Each data point on a graph is an
average of a set of randomized trials

 Each thread:
› Runs for a fixed length of time
› Performs random operations according to

some predefined probability distribution
 E.g., 25% insertion, 25% deletion and 50%

searching in a list
› Records the number of operations

completed in the allotted time

 Each thread:
› Performs M operations and then stop
› Records the time when the last thread stops

 In this type of trial, one thread can finish
long after the others

 This can make it seem like much more
time is needed to perform M operations

 Some algorithms and data structures will
reach a steady state for some workloads

 Example: consider a binary search tree T
that stores keys in the range [0, 1000)

 Suppose the expected workload is
50% insertion and 50% deletion

 In expectation, T will contain 500 keys
after it has been in use for a long time

 Example: consider a BST and a skip list
that store keys in the range [0, 1000000)

 Running 1 second trials with
50% insertions and 50% deletions, we get:

BST

skip list

95% confidence
interval

 Suppose we prefill the data structures to
their steady states (~500,000 keys)

 Then, running 1 second trials with
50% insertions and 50% deletions, we get:

Initially empty Initially in steady state

 Consider an algorithm that:
› Allocates a large amount of memory in the

early stages of its execution
› Then, simply reuses that memory (never

allocating any more)
 If trials are very short, then memory

allocation overhead is large
 However, in an infinite execution, the

amortized cost of allocation is zero

 Memory reclamation and deallocation
 Processor cache occupancy
 Experimental design

› E.g., choice of workload
(75% insertion & 25% deletion
 has a different steady state than
 50% insertion & 50% deletion)

 Properties of algorithms / data structures

 May have to run trials for a very long
time to reach a steady state

 Time constraints might prevent this
 Goal: find a way to run short trials that

give the same answers as long trials
› Always sanity check by running some very

long trials to see if the results are different

Main thread
 state = pending
 Create & start threads
 Wait on a barrier b
 state = running
 Sleep() for S seconds
 state = done
 Print #ops / S

Every other thread
 Perform initialization
 Wait on barrier b
 Wait until state == running
 Loop

› Perform random op
› If state == done,

then terminate

 Problem: Sleep() might sleep for longer than S seconds

Main thread
 start = null
 Create & start threads
 Wait on a barrier b
 start = System.nanoTime()
 Sleep() for S seconds
 end = System.nanoTime()
 Print #ops / ((end-start)/109)

Every other thread
 Perform initialization
 Wait on barrier b
 Wait until start ≠ null
 Loop

› Perform random op
› If end ≠ null then halt

 Problem: if the main thread is context switched out after
reading the current time, but before writing to start, then
threads are timed while waiting start to be written

Main thread
 start = null
 state = pending
 Create & start threads
 Wait on a barrier b
 state = running
 Wait for threads to halt
 end = max{endp}
 Print #ops /

 ((end - start)/109)

Every other thread p
 Perform initialization
 Wait on barrier b
 Wait until state ≠ pending
 startp = System.nanoTime()
 CAS(start, null, startp)

 Loop
› Perform random operation
› endp = System.nanoTime()

› if endp – start > 109∙S then halt

 Problem: endp can be much more than S seconds after
start if p sleeps just before calling nanoTime

Main thread
 start = null
 state = pending
 Create & start threads
 Wait on a barrier b
 state = running
 Wait for threads to halt
 end = max{endp}
 Print #ops /

 ((end - start)/109)

Every other thread p
 Perform initialization
 Wait on barrier b
 Wait until state ≠ pending
 startp = System.nanoTime()
 CAS(start, null, startp)

 Loop
› Perform random operation
› t = System.nanoTime()

› if t – start > 109∙S then halt
else endp = t

 Lemma: endp is at most S seconds after start, and is
captured between p’s last two operations.

Good idea to call
System.gc() here

java.util.concurrent.CyclicBarrier

 On Solaris, nanoTime performs a CAS,
which can severely limit scaling

 On Ubuntu, nanoTime has significant
overhead, but affects scaling less

Intel 4770, Ubuntu 14.04 Oracle T2+, Solaris 10

 Create a dummy data structure with
operations that do nothing

 Measure its performance to check the
overhead of your test harness

 A low overhead test harness is vital when
testing short, simple operations

 If an algorithm’s performance is limited
by the overhead of your experimental
setup, it cannot be evaluated fairly!

High overhead setup Low overhead setup

 Trivial parallel algorithm:
› divide a random matrix into equal parts,

one for each thread
› each thread counts odd entries in its part

Counters: long count[n];
Thread i does: ++count[i];

Counters: long count[n*8];
Thread i does: ++count[i*8];

 Naïve arrays with one slot of private data
per thread can cause contention!

 When p1 writes to its slot, it invalidates
the entire cache line on all CPU cores

 Solution: only one slot per cache line

› Requires much more space

p1 p2

p1 p2 p3 p4 p5 p6 p7 p8

cache line
(typically 64 bytes)

cache line

p3 …

 Consider the following toy Java class:
class SingleCell<K> {
 K value;
 boolean set(K key) { value = key; }
}

 How much memory is used by this code?
 SingleCell<Integer> cell = new SingleCell<>();
 for (int i = 0; ; ++i) cell.set(i % 100);

 When i%100 is passed to set(), an Integer
object with the value i%100 is created
› This is called auto boxing

What is this type?
Which type does

set() require?

 Running this code for 3 seconds produces
more than 15GB of garbage Integer objects

[GC (System.gc()) 235929K->20378K(15073280K), 0.0165442 secs]
[Full GC (System.gc()) 20378K->20182K(15073280K), 0.1702617 secs]
starting trial...
[GC (Allocation Failure) 3952342K->20382K(15073280K), 0.0010818 secs]
[GC (Allocation Failure) 3952542K->20286K(15073280K), 0.0006483 secs]
[GC (Allocation Failure) 3952446K->20318K(15073280K), 0.0005037 secs]
[GC (Allocation Failure) 3952478K->20350K(15073280K), 0.0006393 secs]
finished trial...

 Garbage collection notifications like this
can (and should) be printed by running
java –XX:+PrintGC MyProgram

 Save it to a file instead with –Xloggc:my.log

 Instead of creating a new Integer object
each time an integer in the range [0, 99) is
passed to set, we can reuse Integer objects

Integer[] reuse = new Integer[100];
for (int i = 0; i < 100; ++i) reuse[i] = i;
SingleCell<Integer> cell = new SingleCell<>();
for (int i = 0; ; ++i) cell.set(reuse[i % 100]);

 The following graph shows how reusing
Integer objects improves performance

 The JVM heap is 256MB
› A smaller heap makes auto boxing slower

 The JVM accepts two arguments,
–Xms and –Xmx, which specify minimum
and maximum heap sizes, respectively

 If these parameters are not specified,
the JVM can resize the heap
› In practice, JVMs frequently resize the heap
› Since this may occur in some trials, and not

in others, it is best to control this variable

 When comparing algorithms that use lots
of memory, heap size matters

 It is important to think about whether
comparisons should include or exclude
memory reclamation cost

Minimum and
maximum
heap size

 Java compilation occurs throughout an
execution (but mostly in the first few seconds)

 This is important when comparing algorithms
› Some algorithms take longer to compile, and stay

in a slow, interpreted state for longer
› This reduces their measured performance

compared to faster compiling algorithms
 One solution is to discard the first few trials of

each experiment

 For example, the following graph shows
how the throughput for three data
structures changes as they are compiled

 Should discard trials 0-4 (maybe even 0-14)

 Use a 64-bit JVM on a 64-bit machine
 Use the -d64 and -server JVM flags

› java -d64 -server MyProgram

› The former enables 64-bit execution
› The latter enables aggressive optimizations

 These flags can change performance
measurements significantly

Without –d64 flag With –d64 flag

 Multiple experiments run in the same JVM
are not statistically independent
› See “Statistically Rigorous Java Performance

Evaluation” by Georges et al.
 It is not enough to simply run garbage

collection between each pair of trials
 The internal state of the memory allocator,

garbage collector and Hotspot compiler
are largely inaccessible

 Collect data on a per-thread basis to
avoid synchronization
› Create a private ThreadData object for

each thread, containing private counters
› Aggregate (Sum/Average/Min/Max) the

data in these objects after a trial has ended

 Output all per-thread data, and any
useful debugging information (as long as
this does not affect performance)

 The extra output helps with debugging
 Use Bash scripts to prune unwanted info

PREFILL op# 1000000 sz=316497 expectedSize=500000
PREFILL op# 2000000 sz=432205 expectedSize=500000
PREFILL op# 3000000 sz=474889 expectedSize=500000
finished prefilling to size 485001 for expected size 500000
main thread: starting timer...
main thread: attempting to join thread 0
tid= 0: op# 1000000
tid= 1: op# 1000000
tid= 1: op# 2000000
tid= 0: op# 2000000
 ...
main thread: joined thread 0
main thread: attempting to join thread 1
main thread: joined thread 1
total insert succ : 1095616
total insert retry : 1
total erase succ : 1095312
total erase retry : 2
total find succ : 8761970
total find retry : 0
total succ insert+erase+find : 10952898
throughput (succ ops/sec) : 3650966
elapsed milliseconds : 3000

 Suppose $file contains the trial’s filename
 For example, we can extract the

throughput, using grep, cut and tr:

› x=` grep "throughput" $file | cut –d":" –f2 | tr –d " " `

 We can also extract, e.g., the number of
threads from the filename:

› nthreads=` echo $file | cut -d"-" -f5 | tr -d "n" `

 ...
total succ insert+erase+find : 10952898
throughput (succ ops/sec) : 3650966
elapsed milliseconds : 3000

 Avoid java.util.Random, which uses locks
 Alternative Random implementation:

 Create an instance of Random for each
thread (with different seed values from,
e.g., https://www.random.org/)

public class Random
 private int seed;
 public Random (int seed) { this.seed = seed; }
 public int nextInt() {
 seed ^= seed << 6;
 seed ^= seed >>> 21;
 seed ^= seed << 7;
 return seed;
 }
}

 ssh indigo

 ssh yufb-s##@207.108.8.131

 (You must go through indigo, because
all other IPs are rejected by MTL)

 Copy MyFolder to your MTL home directory
› scp -r MyFolder yufb-s##@207.108.8.131:

 Copy MyFile to your MTL home directory
› scp MyFile yufb-s##@@207.108.8.131:

 javac -version
› Eclipse Java Compiler v_677_R32x,
3.2.1 release, Copyright IBM Corp
2000, 2006. All rights reserved.

 This is quite old, so make sure you use the
versions of javac and java located in
/opt/java/latest/bin/

 /opt/java/latest/bin/javac -version
› javac 1.7.0_01

 The number of threads each user can
spawn is limited

 If you spawn too many, Java will
experience an internal error, and, in my
experience, will refuse to terminate

 Since you have exhausted your supply of
threads, you will be unable to log in again
or execute kill to stop your runaway JVM

 After 24 hours your JVM will be auto-killed

 If you do not want to experience this,
you can first “reserve” a victim process
› I run an extra SCP connection to MTL
› If I need to free up a process, I terminate my

SCP connection, which freeing up a process
I can then use to run kill

› The following command does the trick:

for i in {1..9999}; do kill -9 $i; done

 Control the set of processors that your
application will use with taskset, e.g.,
› taskset 1-16 MyBenchmarkScript

› MyBenchmarkScript will use only CPUs 1-16
 Text editor on MTL: nano
 SCP for Windows: WinSCP
 SSH for Windows: PuTTY
 Check who else is running on MTL: top

http://winscp.net/eng/download.php
http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html

	Java Experiments on MTL
	Outline
	Designing experiments
	Designing experiments: the goal
	Explaining behaviour is important
	Common experimental setups
	Performing microbenchmarks
	A typical trial for a data structure
	A poorly designed trial
	Steady states
	Steady states are important
	Steady states are important
	Memory allocation affects the steady state
	Other steady state factors
	Reaching a steady state
	Performing experiments in Java
	Running an experiment – attempt 1
	Running an experiment – attempt 2
	Running an experiment – attempt 3
	Running an experiment – attempt 4
	Cost of nanoTime varies
	Experimental setup overhead
	Why overhead matters
	False sharing
	False sharing
	Be careful with auto boxing
	Boxing is expensive
	A space efficient alternative
	The impact on performance
	The JVM heap and resizing
	Results depend on heap size
	Hot-spot compilation
	Hot-spot compilation - 2
	Runtime flags for the JVM
	Impact of the –d64 flag
	Run each data point in a separate JVM
	Recording data in a trial�(e.g., number of operations completed)
	Output for each trial
	Example output file for a trial:�perf-i10-d10-k1000000-n2-t3000-trial4.csv
	Using Bash to get results from trial file:�perf-i10-d10-k1000000-n2-t3000-trial4.csv
	Source of randomness
	Intel’s Multicore Testing Lab
	Logging in to MTL
	Path to java and javac
	Do not spawn too many threads
	Premeditated killing
	Miscellanea

