
Concurrent Object-Oriented Languages
The Java Memory Model

wiki.eecs.yorku.ca/course/6490A

CSE 6490A

wiki.eecs.yorku.ca/course/6490A

Sources

Jeremy Manson and Brian Goetz. JSR 133 (Java Memory
Model) FAQ. February 2004.
Jeremy Manson, William Pugh and Sarita V. Adve. The
Java Memory Model. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages , pages 378–391, Long Beach,
CA, USA, January 2005. ACM.
James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The
Java Language Specification. Chapter 17.
Addison-Wesley, Reading, MA, USA, 2nd edition, 2000.

CSE 6490A

What is a Memory Model?

A memory model defines necessary and sufficient conditions
for knowing that writes to memory by other processors are
visible to the current processor, and writes by the current
processor are visible to other processors.

CSE 6490A

Why do we Need a Memory Model?

Local memory (caches, registers, and other hardware and
compiler optimizations) can improve performance
tremendously, but it presents a host of new challenges. What,
for example, happens when two processors examine the same
memory location at the same time? Under what conditions will
they see the same value? A memory model provides answers
to these questions.

CSE 6490A

Synchronized Methods/Blocks

After we exit a synchronized block, we release the monitor,
which has the effect of flushing the cache to main memory, so
that writes made by this thread can be visible to other threads.

Before we can enter a synchronized block, we acquire the
monitor, which has the effect of invalidating the local processor
cache so that variables will be reloaded from main memory. We
will then be able to see all of the writes made visible by the
previous release.

CSE 6490A

Volatile

Each read or write of a volatile field acts like "half" a
synchronization, for purposes of visibility.

Each read of a volatile will see the last write to that volatile by
any thread; in effect, they are designated by the programmer as
fields for which it is never acceptable to see a "stale" value as a
result of caching or reordering.

CSE 6490A

What is a Partial Order?

Definition
Let X be a set. A binary relation v on X is a partial order if for
all x , y and z ∈ X ,

x v x ,
if x v y and y v x then x = y , and
if x v y and y v z then x v z.

CSE 6490A

Partial Orders

The standard less-than-or-equal relation ≤ on the real
numbers.
The relation ·divides· on the natural numbers.
The inclusion relation ⊆ on the powerset of a given set.

CSE 6490A

Partial Orders

{a, b, c}

{a, b}

⊆tttt

99tttt

{a, c}

⊆

OO

{b, c}

⊆JJJJ

eeJJJJ

{a}

⊆

OO

⊆ttttt

99tttt

{b}

⊆JJJJJ

eeJJJJ
⊆ttttt

99tttt

{c}

⊆

OO

⊆JJJJJ

eeJJJJ

∅

⊆KKKKKK

eeKKKKK
⊆
OO

⊆ssssss

99sssss

CSE 6490A

What is a Total Order?

Definition
Let X be a set. A binary relation v on X is a total order if for all
x , y and z ∈ X ,

if x v y and y v x then x = y ,
if x v y and y v z then x v z, and
x v y or y v x .

CSE 6490A

Total Orders

The standard less-than relation < on the real numbers.
The lexicographic order on words.

CSE 6490A

Formal Specification of the JMM

An action is described by a tuple 〈t , k , v〉 where
t is the thread performing the action,
k is the kind of action:

volatile read;
volatile write;
non-volatile read;
non-volatile write;
lock;
unlock;
special synchronization actions;
thread divergence actions;
external actions,

v is the variable or monitor involved in the action.

CSE 6490A

Examples

〈t , volatile read, x〉
〈t , volatile write, x〉
〈t , non-volatile read, x〉
〈t , non-volatile write, x〉
〈t , lock, x〉
〈t , unlock, x〉

are actions.

CSE 6490A

Formal Specification of the JMM

Synchronization actions include
locks,
unlocks,
reads of volatile variables, and
writes to volatile variables.

CSE 6490A

Formal Specification of the JMM

An execution is described by a tuple 〈P, A,
po→,

so→, W , V 〉 where
P is the program,
A is the set of actions,
po→ is the program order, which for each thread t , is a total
order over all actions performed by t in A,
so→ is the synchronization order, which is a total order over
all synchronization actions in A,
W is the write-seen function, which for each read r in A,
gives W (r), the write action seen by r in the execution,
V is the value-written function, which for each write w in A,
gives V (w), the value written by w in the execution.

CSE 6490A

The Synchronizes-With Order

The synchronizes-with order is defined in terms of the
synchronization order.

For each unlock action u and lock action `, if u.v = `.v and
u so→ ` then u sw→ `.

For each volatile read r and volatile write w , if r .v = w .v and
w so→ r then w sw→ r .

Recall that a.v is the variable or monitor involved in the action a.

CSE 6490A

Transitive Closure

Definition
The reflexive and transitive closure closure(R) of a binary
relation R on X is the smallest binary relation on X such that

closure(R) contains R,
for all x , y ∈ X , if x R y then x closure(R) y ,
closure(R) is reflexive
for all x ∈ X , x closure(R) x ,
closure(R) is transitive
for all x , y z ∈ X , if x closure(R) y and y closure(R) z then
x closure(R) z.

CSE 6490A

The Happens-Before Order

The happens-before order is defined in terms of the program
order and the synchronizes-with order.

hb→= closure(
po→ ∪ sw→).

CSE 6490A

Example

a1

��

����������������

��0
00000000000000

a2

~~}}}}}}}

 AAAAAAAA

b1

��

c1

��
b2 c2

CSE 6490A

Example

a1 a2 b1 b2 c1 c2
a1 • • •
a2 • •
b1 •
b2
c1 •
c2

CSE 6490A

Example

a1 a2 b1 b2 c1 c2
a1 • • • • • •
a2 • • • • •
b1 • •
b2 •
c1 • •
c2 •

CSE 6490A

