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Actions

We restrict our attention to interthread actions, that is, those
you would see if you were standing at the interface between
processor and memory.
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Formal specification of actions

An action is described by a tuple 〈t , k , v〉 where
t is the thread performing the action,
k is the kind of action:

volatile read;
volatile write;
non-volatile read;
non-volatile write;
lock;
unlock;
special synchronization actions;
thread divergence actions;
external actions,

v is the variable or monitor involved in the action, and
u is an arbitrary unique identifier for the action.
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Synchronization actions

Synchronization actions include
locks,
unlocks,
reads of volatile variables, and
writes to volatile variables.
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Executions

An executions consists of
its actions
for each thread, the program order of the actions, and
the synchronization order of the synchronization actions.
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Program order

The program order is a total order of the actions of a thread in
an execution that reflects the order in which these actions in the
code (I think).
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Synchronization order

The synchronization order is a total order of the
synchronization actions of an execution.

For the synchronization actions of a thread, the program and
synchronization orders coincide.
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The synchronizes-with order

The synchronizes-with order is defined in terms of the
synchronization order.

For each unlock action u and lock action `, if u.v = `.v and
u so→ ` then u sw→ `.

For each volatile read r and volatile write w , if r .v = w .v and
w so→ r then w sw→ r .

Recall that a.v is the variable or monitor involved in the action a.

CSE 6490A



Closure

Definition
The reflexive and transitive closure closure(R) of a binary
relation R on X is the smallest binary relation on X such that

closure(R) contains R,
for all x , y ∈ X , if x R y then x closure(R) y ,
closure(R) is reflexive
for all x ∈ X , x closure(R) x ,
closure(R) is transitive
for all x , y z ∈ X , if x closure(R) y and y closure(R) z then
x closure(R) z.
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The happens-before order

The happens-before order is defined in terms of the program
order and the synchronizes-with order.

hb→= closure(
po→ ∪ sw→).
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Formal specification of executions

An execution is described by a tuple 〈P, A,
po→,

so→, W , V 〉 where
P is the program,
A is the set of actions,
po→ is the program order, which for each thread t , is a total
order over all actions performed by t in A,
so→ is the synchronization order, which is a total order over
all synchronization actions in A,
W is the write-seen function, which for each read r in A,
gives W (r), the write action seen by r in the execution,
V is the value-written function, which for each write w in A,
gives V (w), the value written by w in the execution,
sw→ is the synchronizes-with order, a partial order over
synchronization actions, and
hb→ is the happens-before order.
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Well-formed executions

An execution is well-formed if
Each read of a variable x sees a write to x . All reads and
writes of volatile variables are volatile actions.
The happens-before order is a partial order.
The execution obeys intra-thread consistency.
The execution obeys synchronization-order consistency.
The execution obeys happens-before consistency.
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Well-formed executions

Each read of a variable x sees a write to x . All reads and writes
of volatile variables are volatile actions.

For all reads r ∈ A, we have that W (r) ∈ A and W (r).v = r .v .
The variable r .v is volatile if and only if r is a volatile read, and
the variable W (r).v is volatile if and only if W (r) is a volatile
write.

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.
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Well-formed executions

The execution obeys intra-thread consistency.

“For each thread t , the actions performed by t in A are the
same as would be generated by that thread in program-order in
isolation, with each write w writing the value V (w), given that
each read r sees/returns the value V (W (r)). Values seen by
each read are determined by the memory model.”
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Well-formed executions

The execution obeys synchronization-order consistency.

For each volatile read r ∈ A, it is not the case that r so→W (r)
and there does not exist a write w such that w .v = r .v and
W (r) so→ w so→ r .

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.
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Well-formed executions

The execution obeys happens-before consistency.

For each read r ∈ A, it is not the case that r hb→W (r) and there
does not exist a write w such that w .v = r .v and
W (r) hb→ w hb→ r .

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.
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Causality requirements

An execution 〈P, A,
po→,

so→, W , V 〉 satisfies the causality
requirements if there exist

sets of actions C0, C1, . . . such that
C0 = ∅,
Ci ⊂ Ci+1,
A =

⋃
i Ci ,

well-formed executions 〈Pi , Ai ,
poi→,

soi→, W , V 〉
such that . . .

CSE 6490A



Causality requirements

. . .
Ci ⊆ Ai ,
hbi→ and hb→ agree on Ci ,
soi→ and so→ agree on Ci ,
Vi and V agree on Ci ,
Wi and W agree on Ci ,

for each read r ∈ Ai \ Ci−1, we have that Wi(r)
hbi→ r ,

for each read r ∈ Ci \ Ci−1, we have that Wi(r) ∈ Ci−1 and
W (r) ∈ Ci−1,

for all actions x , y , z ∈ Ai , if x sswi→ y hbi→ z and z ∈ Ci \ Ci−1

then x
swj→ y for all j ≥ i ,

for all actions x , y ∈ Ai , if y ∈ Ci , x is an external action
and x hbi→ y then x ∈ Ci .
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Volatile

class Volatile
{

private int value;
private volatile boolean initialized;

public void write(int value)
{

this.value = value;
this.initialized = true;

}

public void use()
{

if (this.initialized)
{

// write has been invoked
...

}
}
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