
Concurrent Object-Oriented Languages
The Java Memory Model

wiki.eecs.yorku.ca/course/6490A

CSE 6490A

wiki.eecs.yorku.ca/course/6490A


Actions

We restrict our attention to interthread actions, that is, those
you would see if you were standing at the interface between
processor and memory.

CSE 6490A



Formal specification of actions

An action is described by a tuple 〈t , k , v〉 where
t is the thread performing the action,
k is the kind of action:

volatile read;
volatile write;
non-volatile read;
non-volatile write;
lock;
unlock;
special synchronization actions;
thread divergence actions;
external actions,

v is the variable or monitor involved in the action, and
u is an arbitrary unique identifier for the action.

CSE 6490A



Synchronization actions

Synchronization actions include
locks,
unlocks,
reads of volatile variables, and
writes to volatile variables.

CSE 6490A



Executions

An executions consists of
its actions
for each thread, the program order of the actions, and
the synchronization order of the synchronization actions.

CSE 6490A



Program order

The program order is a total order of the actions of a thread in
an execution that reflects the order in which these actions in the
code (I think).

CSE 6490A



Synchronization order

The synchronization order is a total order of the
synchronization actions of an execution.

For the synchronization actions of a thread, the program and
synchronization orders coincide.

CSE 6490A



The synchronizes-with order

The synchronizes-with order is defined in terms of the
synchronization order.

For each unlock action u and lock action `, if u.v = `.v and
u so→ ` then u sw→ `.

For each volatile read r and volatile write w , if r .v = w .v and
w so→ r then w sw→ r .

Recall that a.v is the variable or monitor involved in the action a.

CSE 6490A



Closure

Definition
The reflexive and transitive closure closure(R) of a binary
relation R on X is the smallest binary relation on X such that

closure(R) contains R,
for all x , y ∈ X , if x R y then x closure(R) y ,
closure(R) is reflexive
for all x ∈ X , x closure(R) x ,
closure(R) is transitive
for all x , y z ∈ X , if x closure(R) y and y closure(R) z then
x closure(R) z.

CSE 6490A



The happens-before order

The happens-before order is defined in terms of the program
order and the synchronizes-with order.

hb→= closure(
po→ ∪ sw→).

CSE 6490A



Formal specification of executions

An execution is described by a tuple 〈P, A,
po→,

so→, W , V 〉 where
P is the program,
A is the set of actions,
po→ is the program order, which for each thread t , is a total
order over all actions performed by t in A,
so→ is the synchronization order, which is a total order over
all synchronization actions in A,
W is the write-seen function, which for each read r in A,
gives W (r), the write action seen by r in the execution,
V is the value-written function, which for each write w in A,
gives V (w), the value written by w in the execution,
sw→ is the synchronizes-with order, a partial order over
synchronization actions, and
hb→ is the happens-before order.

CSE 6490A



Well-formed executions

An execution is well-formed if
Each read of a variable x sees a write to x . All reads and
writes of volatile variables are volatile actions.
The happens-before order is a partial order.
The execution obeys intra-thread consistency.
The execution obeys synchronization-order consistency.
The execution obeys happens-before consistency.

CSE 6490A



Well-formed executions

Each read of a variable x sees a write to x . All reads and writes
of volatile variables are volatile actions.

For all reads r ∈ A, we have that W (r) ∈ A and W (r).v = r .v .
The variable r .v is volatile if and only if r is a volatile read, and
the variable W (r).v is volatile if and only if W (r) is a volatile
write.

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.

CSE 6490A



Well-formed executions

The execution obeys intra-thread consistency.

“For each thread t , the actions performed by t in A are the
same as would be generated by that thread in program-order in
isolation, with each write w writing the value V (w), given that
each read r sees/returns the value V (W (r)). Values seen by
each read are determined by the memory model.”

CSE 6490A



Well-formed executions

The execution obeys synchronization-order consistency.

For each volatile read r ∈ A, it is not the case that r so→W (r)
and there does not exist a write w such that w .v = r .v and
W (r) so→ w so→ r .

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.

CSE 6490A



Well-formed executions

The execution obeys happens-before consistency.

For each read r ∈ A, it is not the case that r hb→W (r) and there
does not exist a write w such that w .v = r .v and
W (r) hb→ w hb→ r .

Recall that W is the write-seen function, which for each read r
in A, gives W (r), the write action seen by r in the execution.
Also recall that a.v is the variable involved in action a.

CSE 6490A



Causality requirements

An execution 〈P, A,
po→,

so→, W , V 〉 satisfies the causality
requirements if there exist

sets of actions C0, C1, . . . such that
C0 = ∅,
Ci ⊂ Ci+1,
A =

⋃
i Ci ,

well-formed executions 〈Pi , Ai ,
poi→,

soi→, W , V 〉
such that . . .

CSE 6490A



Causality requirements

. . .
Ci ⊆ Ai ,
hbi→ and hb→ agree on Ci ,
soi→ and so→ agree on Ci ,
Vi and V agree on Ci ,
Wi and W agree on Ci ,

for each read r ∈ Ai \ Ci−1, we have that Wi(r)
hbi→ r ,

for each read r ∈ Ci \ Ci−1, we have that Wi(r) ∈ Ci−1 and
W (r) ∈ Ci−1,

for all actions x , y , z ∈ Ai , if x sswi→ y hbi→ z and z ∈ Ci \ Ci−1

then x
swj→ y for all j ≥ i ,

for all actions x , y ∈ Ai , if y ∈ Ci , x is an external action
and x hbi→ y then x ∈ Ci .

CSE 6490A



Volatile

class Volatile
{

private int value;
private volatile boolean initialized;

public void write(int value)
{

this.value = value;
this.initialized = true;

}

public void use()
{

if (this.initialized)
{

// write has been invoked
...

}
}

CSE 6490A


