Concurrent Object Oriented Languages

Monitors

wiki.eecs.yorku.ca/course/6490A

CSE 6490A


wiki.eecs.yorku.ca/course/6490A

Monitors were invented by Tony Hoare and Per Brinch Hansen.

C.A.R. Hoare. Monitors: an operating system structuring
concept. Communications of the ACM, 17(10):549.557,

October 1974.

CSE 6490A



sir Charles Antony Richard (Tony) Hoare

@ Fellow of the Royal Society
(1982)

@ Fellow of the Royal Academy
of Engineering (2005)

@ Recipient of the Turing Award
(1980)

Tony Hoare

source: cs.ox.ac.uk

CSE 6490A



Per Brinch Hansen

@ |[EEE Computer Pioneer
Award (2002)

Per Brinch Hansen
(1938—-2007)

source: Per Brinch Hansen

CSE 6490A



A monitor consists of
@ data: variables and initialization
@ procedures

The variables can only be accessed within the monitor and, at
any moment, at most one thread can be executing a procedure
of a monitor. Hence, there cannot be any data races on the
variables of a monitor.

CSE 6490A



A Simple Example

Counter : monitor

begin
value : int;
procedure increment(result number : int)
begin
value := value + 1;
number := value;
end
procedure decrement(result number : int)
begin
value := value — 1;
number := value;
end
value := 0;
end

CSE 6490A



Synchronization

A condition variable can be thought of as an event that has no
value.

On a condition variable we perform the following operations.
@ The wait operation
e is issued inside a procedure of the monitor, and
e causes the calling thread to be delayed.
@ The signal operation

o is issued inside a procedure of the monitor, and
e causes exactly one of the waiting threads to be resumed (if
there are no waiting program, the operation has no effect).

CSE 6490A



A Simple Example

Resource : monitor
begin

procedure acquire ()
begin

end
procedure release ()
begin

end

end

CSE 6490A



A Semaphore

Semaphore : monitor
begin

procedure P()
begin

end
procedure V()
begin

end

end

CSE 6490A



The Consumer-Producer Problem

BoundedBuffer : monitor
begin

N : int;

buffer : int[];

next : int;

size : int;

procedure put(value : int)

begin

end
procedure get(result value : int)
begin

end

N := 10;
next := 0;
size = 0;

CSE 6490A



The Consumer-Producer Problem

procedure put(value : int)
begin

buffer[next] := value;

size := size + 1;

next (next + 1) mod N
end

CSE 6490A



The Consumer-Producer Problem

procedure get(result value : int)
begin
value := buffer[(next — size) mod NJ;
size = size — 1;
end

CSE 6490A



The Readers-Writers Problem

ReadersAndWriters : monitor
begin

procedure startRead ()
begin

end
procedure stopRead ()
begin

end
procedure startWrite ()
begin

end
procedure stopWrite ()

begin
CSE 6490A



The Dining Philosophers Problem

Table : monitor
begin

procedure getForks(int i)
begin

end
procedure putForks(int i)
begin

end

end

CSE 6490A



