
Bibliography

Question
How do you cite a journal article?

The names of the authors (for example, all separated by
commas apart from the last two which are separated by
“and”).
The title of the article.
The title of the journal, volume(number): pages, month,
year.

Example
Carla Schlatter Ellis. Concurrent Search and Insertion in AVL
Trees. IEEE Transactions on Computers, 29(9):811–817,
September 1980.

CSE 6490A

Bibliography

Question
How do you cite a journal article?

The names of the authors (for example, all separated by
commas apart from the last two which are separated by
“and”).
The title of the article.
The title of the journal, volume(number): pages, month,
year.

Example
Carla Schlatter Ellis. Concurrent Search and Insertion in AVL
Trees. IEEE Transactions on Computers, 29(9):811–817,
September 1980.

CSE 6490A

Bibliography

Question
How do you cite a journal article?

The names of the authors (for example, all separated by
commas apart from the last two which are separated by
“and”).
The title of the article.
The title of the journal, volume(number): pages, month,
year.

Example
Carla Schlatter Ellis. Concurrent Search and Insertion in AVL
Trees. IEEE Transactions on Computers, 29(9):811–817,
September 1980.

CSE 6490A

Bibliography

Question
How do you record a journal article in BiBTeX?

@article{Ellis80,
author = "Carla Schlatter Ellis",
title = "Concurrent Search and Insertion in

{AVL} Trees",
journal = "IEEE Transactions on Computers",
volume = "29",
number = "9",
pages = "811--817",
month = sep,
year = "1980"}

CSE 6490A

Bibliography

Question
How do you cite a paper in a conference proceedings?

The names of the authors (for example, all separated by
commas apart from the last two which are separated by
“and”).
The title of the paper.
In, the names of the editors of the proceedings (for
example, all separated by commas apart from the last two
which are separated by “and”), the title of the proceedings,
volume of title of the series, pages, location where the
conference was held, month, year.
Publisher.

CSE 6490A

Bibliography

Question
How do you cite a paper in a conference proceedings?

The names of the authors (for example, all separated by
commas apart from the last two which are separated by
“and”).
The title of the paper.
In, the names of the editors of the proceedings (for
example, all separated by commas apart from the last two
which are separated by “and”), the title of the proceedings,
volume of title of the series, pages, location where the
conference was held, month, year.
Publisher.

CSE 6490A

Bibliography

Example
Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle
Olukotun. A practical concurrent binary search tree. In
R. Govindarajan, David A. Padua, and Mary W. Hall, editors,
Proceedings of the 15th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
257–268, Bangalore, India, January 2010. ACM.

CSE 6490A

Bibliography

Question
How do you record a paper in a conference proceedings in
BiBTeX?

@inproceedings{BronsonCasperChafiOlukotun10,
author = "Nathan G. Bronson and Jared Casper

and Hassan Chafi and Kunle Olukotun",
title = "A practical concurrent binary search tree",
booktitle = "Proceedings of the 15th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming",
year = "2010",
editor = "R. Govindarajan and David A. Padua and Mary W. Hall",
pages = "257--268",
address = "Bangalore, India",
month = jan,
publisher = "ACM"}

CSE 6490A

Concurrent Object Oriented Languages
Non-blocking synchronization

wiki.eecs.yorku.ca/course/6490A

CSE 6490A

wiki.eecs.yorku.ca/course/6490A

A Concurrent Stack

Task
Implement the abstract data type Stack such that multiple
threads can perform the operations push and pop concurrently.

CSE 6490A

Lock the Whole Stack

Using a semaphore.

semaphore mutex = 1
node top = n u l l

push (e) :
P(mutex)
new = node wi th element e
new . next = top
top = new
V(mutex)

CSE 6490A

Lock the Whole Stack

Using a semaphore.

semaphore mutex = 1
node top = n u l l

push (e) :
P(mutex)
new = node wi th element e
new . next = top
top = new
V(mutex)

CSE 6490A

Lock the Whole Stack

Using a semaphore.

pop :
P(mutex)
i f (top == n u l l)

V(mutex)
r e t u r n EMPTY

else
temp = top
top = top . next
V(mutex)
r e t u r n element o f temp

CSE 6490A

Lock the Whole Stack

Using a semaphore.

pop :
P(mutex)
i f (top == n u l l)

V(mutex)
r e t u r n EMPTY

else
temp = top
top = top . next
V(mutex)
r e t u r n element o f temp

CSE 6490A

Lock the Whole Stack

Using a monitor.

Stack : moni tor
begin

node top

procedure push (number : i n t)
begin

new = node wi th element number
new . next = top
top = new

end

CSE 6490A

Lock the Whole Stack

Using a monitor.

Stack : moni tor
begin

node top

procedure push (number : i n t)
begin

new = node wi th element number
new . next = top
top = new

end

CSE 6490A

Lock the Whole Stack

Using a monitor.

procedure pop (r e s u l t number : i n t)
begin

i f (top == n u l l)
number = EMPTY

else
number = element o f top
top = top . next

end

top = n u l l
end

CSE 6490A

Lock the Whole Stack

Using a monitor.

procedure pop (r e s u l t number : i n t)
begin

i f (top == n u l l)
number = EMPTY

else
number = element o f top
top = top . next

end

top = n u l l
end

CSE 6490A

Locks: Number and Granularity

Reducing the number and length of sequentially executed code
sections is crucial to performance. In the context of locking, this
means

reducing the number of locks acquired, and
reducing lock granularity, a measure of the number of
instructions executed while holding a lock.

CSE 6490A

Lock the First Node

Only lock the first node of the list.

node top = dummy

push (e) :
new = node wi th element e
lock (top)
new . next = top
lock (new)
temp = top
top = new
unlock (temp)

CSE 6490A

Lock the First Node

Only lock the first node of the list.

node top = dummy

push (e) :
new = node wi th element e
lock (top)
new . next = top
lock (new)
temp = top
top = new
unlock (temp)

CSE 6490A

Lock the First Node

Only lock the first node of the list.

pop () :
lock (top)
i f (top == dummy)

unlock (top)
r e t u r n EMPTY

else
number = element o f top
temp = top
top = top . next
unlock (temp)

end

CSE 6490A

Lock the First Node

Only lock the first node of the list.

pop () :
lock (top)
i f (top == dummy)

unlock (top)
r e t u r n EMPTY

else
number = element o f top
temp = top
top = top . next
unlock (temp)

end

CSE 6490A

Memory Contention

This solution suffers from memory contention: an overhead in
traffic in the underlying hardware as a result of multiple threads
concurrently attempting to access the same locations in
memory. If the lock protecting the node is implemented in a
single memory location, as many simple locks are, then in order
to acquire the lock, a thread must repeatedly attempt to modify
that location.

CSE 6490A

Blocking

In any solution that uses locks, if a thread that holds a lock is
delayed, then all other threads attempting to get the lock are
also delayed. Therefore, this (and the previous) solution is
called blocking.

CSE 6490A

Do Not Lock

Instead of locks, use synchronization instructions, such as
compare-and-swap (CAS) and load-linked/store-conditional
(LL/SC). All modern processors provide such instructions.

CSE 6490A

Compare-And-Swap (CAS)

The operation CAS(variable, expected, new) atomically
loads the value of variable,
compares that value to expected,
assigns new to variable if the comparison succeeds, and
returns the old value of variable.

CSE 6490A

Distributed Computing

The graduate course CSE 6117 entitled Distributed Computing
studies non-blocking algorithms and their properties in detail.

CSE 6490A

ABA Problem

The ABA problem occurs during synchronization, when a
location is read twice, has the same value for both reads, and
“value is the same” is used to indicate “nothing has changed”.
However, another thread can execute between the two reads
and change the value, do other work, then change the value
back, thus fooling the first thread into thinking “nothing has
changed” even though the second thread did work that violates
that assumption.

source: wikipedia

CSE 6490A

ABA Solution

A general solution to the ABA problem is to use a double-length
CAS (e.g. on a 32 bit system, a 64 bit CAS). The second half is
used to hold a counter. The compare part of the operation
compares the previously read value of the variable and the
counter, to the current value and counter. If they match, the
swap occurs - the new value is written - but the new value has
an incremented counter. This means that if ABA has occurred,
although the value of the variable will be the same, the counter
is exceedingly unlikely to be the same (for a 32 bit value, a
multiple of 232 operations would have had to occurred, causing
the counter to wrap and at that moment, the value of the
variable would have to also by chance be the same).

CSE 6490A

CAS

push (e) :
new = node wi th element e ;
do

temp = top ;
new . next = temp ;

wh i le (CAS(top , temp , new) != temp) ;

pop () :
do

temp = top ;
i f (temp i s undef ined)

r e t u r n EMPTY
whi le (CAS(top , temp , temp . next) != temp) ;
r e t u r n element o f temp ;

CSE 6490A

CAS

push (e) :
new = node wi th element e ;
do

temp = top ;
new . next = temp ;

wh i le (CAS(top , temp , new) != temp) ;

pop () :
do

temp = top ;
i f (temp i s undef ined)

r e t u r n EMPTY
whi le (CAS(top , temp , temp . next) != temp) ;
r e t u r n element o f temp ;

CSE 6490A

