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Abstract

In the previous assignment, we presented three concurrent implementations of red-black
trees. In this assignment, we present their implementation in Java. Furthermore, we discuss
how we tested our implementations for correctness and performance.

1 Introduction

In [1], we presented three different ways to implement red-black trees concurrently. In all three
implementations, we considered only the operations Contains and Add. Our first implementation
uses monitors. Our second implementation is an adaptation of a solution of the readers-writers
problem. In our third implementation, we adapt the concurrent implementation of AVL trees by
Ellis [3] to the setting of red-black trees.

In this paper, we discuss the implementations of all three in Java. All three Java implemen-
tations are based on a Java implementation of the sequential algorithms for the Contains and
Add operations as can be found in [2]. We introduce an interface Set that contains the methods
contains and add. To avoid name clashes, each implementation resides in a different package.
Each package contains a class RedBlackTree and an inner class Node. The former implements the
interface Set and the latter represents a node of a red-black tree.

The concurrent Java implementation based on monitors is simply obtained from the sequential
Java implementation of red-black trees by making the methods contains and add synchronized.
This ensures that no method invocation can interfere with another one. This amounts to the
execution of the method invocations one at a time.

To implement a variation on a solution to the readers-writers problem is Java, we exploit the
class ReentrantReadWriteLock. This class implements the interface ReadWriteLock. According
to the documentation of the Java class library,1 “a ReadWriteLock maintains a pair of associated
locks, one for read-only operations and one for writing. The read lock may be held simultaneously
by multiple reader threads, so long as there are no writers. The write lock is exclusive.” We use
the read lock in the contains method and the write lock in the add method.

The main challenge of the third implementation is the mechanism to lock nodes in different
ways. Since the paper by Ellis [3] does not provide any details, we develop them ourselves. The
remainder of the pseudocode can be mapped to Java in a straightforward way.

1
See download.oracle.com/javase/6/docs/api/java/util/concurrent/locks/ReadWriteLock.html
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In this paper, we also discuss the tests of all three implementations. Since the three concurrent
implementations are based on a sequential implementation, we first test our sequential implemen-
tation. In [1], we conjectured that multiple threads manipulating the sequential implementation of
a red-black tree concurrently may lead to counter-intuitive results. Here, we put that conjecture to
the test. Furthermore, we test the correctness of the contains and add methods in a concurrent
settings. Finally, we test the performance of the three concurrent implementations. We focus only
on throughput, that is, the number of operations that can be performed on the red-black tree per
second.

2 The Set Interface

Our interface Set is a simplification of the interface Set which is part of the package java.util.
Our interface only contains the methods contains and add, whereas the one in Java’s standard
library contains several other methods. In our setting, a Set cannot contain null whereas a
java.util.Set can.

package collection;

/**

* A set of elements different from null.

*

* @author Franck van Breugel

*/

public interface Set<T extends Comparable<T>>

{

/**

* Tests whether this tree contains the given element.

*

* @param element the element for which to search.

* @pre. element != null

* @return true if this tree contains the given element.

*/

public boolean contains(T element);

/**

* Attempts to add the given element to this tree.

* The attempt is successful if this tree does not contain

* the given element yet.

*

* @param element the element to be inserted.

* @pre. element != null

* @return true if the addition is successful, false otherwise.

*/

public boolean add(T element);

}
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3 The RedBlackTree and Node Classes

All three implementations consist of two classes: RedBlackTree and Node. Instances of the inner-
class Node represent a node of a red-black tree. An instance of the class RedBlackTree represents a
red-black tree. The UML diagram below contains those attributes and methods that are common
to all three implementations.

Set〈T〉

+ contains(T) : boolean

+ add(T) : boolean

RedBlackTree〈T〉

root : Node<T>

+ contains(T) : boolean

+ add(T) : boolean

leftRotate(Node<T>)

rightRotate(Node<T>)

+ toString() : String

Node〈T〉

key : T

left : Node<T>

right : Node<T>

parent : Node<T>

red : boolean

+ isLeaf() : boolean

+ isLeft() : boolean

+ isRight() : boolean

+ toString() : String

Note that both the RedBlackTree class and the Node class contain a toString method. This
method is useful for debugging and testing. The methods leftRotate and rightRotate are aux-
iliary methods to the add method.

4 The Monitors Approach

The monitors approach presented in [1] can be mapped to Java in a straightforward way. The
only thing that needs to be done to turn a sequential implementation of a red-black tree into a
concurrent one is make the methods contains and add synchronized.
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public class RedBlackTree<T extends Comparable<T>> implements Set<T>

{

...

public synchronized boolean contains(T key)

...

public synchronized boolean add(T key)

...

}

5 The Readers-Writers Approach

The key ingredient of this implementation is the the class ReentrantReadWriteLock which imple-
ments the interface ReadWriteLock. A ReadWriteLock has two Locks: a read-lock and a write-lock.
The relevant interfaces and classes and their relationships are given in the UML diagram below.

〈〈interface〉〉
ReadWriteLock

readLock() : Lock

writeLock() : Lock

ReentrantReadWriteLock

〈〈interface〉〉
Lock

lock()

unlock()

2

The read-lock is used in the contains method and the write-lock is used in the add method as
follows.

public class RedBlackTree<T extends Comparable<T>> implements Set<T>

{

private ReadWriteLock lock;

...

public RedBlackTree()

{

this.lock = new ReentrantReadWriteLock();

...

}
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public boolean contains(T element)

{

this.lock.getReadLock().lock();

...

this.lock.getReadLock().unlock();

}

public boolean add(T element)

{

this.lock.getWriteLock().lock();

...

this.lock.getWriteLock().unlock();

}

...

}

6 The Fine-Grained Locking Approach

Next, we discuss the implementation in Java of our adaptation of the concurrent AVL trees algo-
rithms proposed by Ellis [3] to red-black trees. Recall that the key idea of this implementation
is that individual nodes can be locked in three different ways: ρ-locked, α-locked and ξ-locked.
Although threads can hold a lock on the same node, there are some restrictions. The following
graph [3] captures those restrictions.

ρ α

ξ

If there is an edge between two lock types, then two threads can have a lock of the given type on
a particular node at the same time. For example, multiple threads can ρ-lock a node and a single
thread can α-lock that node all at the same time.

Most of the pseudocode presented in [1] can be translated into Java in a straightforward way.
The most challenging part of the implementation is the locking and unlocking of the nodes. For
that purpose, we add the following methods to the Node class.

public synchronized void readLock() { ... }

public synchronized void readUnlock() { ... }

public synchronized void writeLock() { ... }

public synchronized void writeUnock() { ... }

public synchronized void exclusiveLock() { ... }

public synchronized void exclusiveUnlock() { ... }

The methods readLock and readUnlock correspond to ρ-lock and ρ-unlock, respectively. Further-
more, the methods writeLock and writeUnlock correspond to α-lock and α-unlock, respectively.
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Finally, the methods exclusiveLock and exclusiveUnlock correspond to ξ-lock and ξ-unlock,
respectively. All these methods are synchronized since, as we will see, they manipulate shared
data.

In order to implement the locking and unlocking, we keep track of the following data:

• the number of threads that have ρ-locked this node. In order to ξ-lock the node, we need to
know that no thread has ρ-locked it. Hence, we introduce the attribute

private int readers;

which is initialized to zero.

• whether a thread has α-locked this node. This allows us to ensure that at most one thread
α-locks a node. For that purpose we introduce the attribute

private boolean write;

which is initialized to false.

• whether a thread has ξ-locked this node. To ensure that a ξ-lock is exclusive we introduce
the attribute

private boolean exclusive;

which is initialized to false.

The above three attributes capture the state of a node. In the diagram below, we depict how the
state of a node changes by performing locking and unlocking. The numbers correspond to the value
of the attribute readers. In the red states, the attribute write has the value true. In the black
states, the attribute exclusive has the value true. Note that if a thread has α-locked a node,
that thread can change it into a ξ-lock. Once the thread ξ-unlocks the node, the node will still be
α-locked. To distinguish between a node whose α-lock was changed into a ξ-lock and a node that
was unlocked before it was ξ-locked, we label the former with an α.

ρ
ξ

0
ρ

α

1
ρ

α

2
ρ

α

. . .

α
ξ

0 ρ 1 ρ 2 ρ
. . .

The lock and unlock methods are all implemented similarly. Let us only look at the most
interesting ones: exclusiveLock and exclusiveUnlock.

public synchronized void exclusiveLock()

{

while (this.readers != 0)

{
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try

{

this.wait();

}

catch (InterruptedException e)

{

System.out.println("wait within exclusiveLock was interrupted");

}

}

this.exclusive = true;

}

public synchronized void exclusiveUnlock()

{

this.exclusive = false;

this.notifyAll();

}

7 Testing

First, we test our sequential implementation. In our tests, we check the invariant that the tree is
a red-black tree is maintained. We also check the postcondition of the contains and add method.
To run the tests, we use JUnit2.

7.1 Synchronization is Essential

In [1], we conjectured that multiple threads manipulating a red-black tree concurrently using the
operations Contains and Add may lead to counter-intuitive results. Consider the following con-
current program.

Add (3 )
Add (1 )
(Add (2 ) ‖ Contains ( 1 ) )

We conjectured that by interleaving the elementary operations of the operations Add and Con-

tains in a particular way, the operation Contains may return false. We ran the Java counterpart
of the above code 1,000,000 times on several different machines. In the table below, we present
the results. The processor column specifies the number of processors of the machine and the core
column describes the number of cores per processor. The columns true and false return the number
of times true and false are returned, respectively.

processor core true false

1 1 1,000,000 0
2 1 999,997 3
8 1 1,000,000 0
2 2 999,999 1
8 4 999,947 53

2www.junit.org
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The tests confirm that some form of synchronization is essential to avoid counter-intuitive results
as described above. Note that some machines did not detect the counter-intuitive results.

7.2 Concurrent Tests

7.3 Performance Tests

8 Conclusion
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