MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC
Computation Structures Group Memo 57

Limitations and Capabilities of Dijkstra's Semaphore Primitives

for Coordination among Procegses

YAy

February 1971

Limitations and Capabilities of Dijkstra's Semaphore Primitives

for Coordination among Procegses

Suhas §. Patil
Project MAC, M.I.T., Cambridge, Massachusetts

ABSTRACT ¢ This paper presents an example from a class of coordinations
which cannot be expressed with the P and V primitives of Dijkstra without
the help of conditional statements. Then the paper shows how the class of
“codbrdinations corresponding to Petri nets can be expressed in terms of
processes with P and V primitives and conditional statements. One
important property of these processes is that they involve a fixed amount
of computation for any given coordination. At the end the paper suggests
a generalization of the primitives.

Limitations and Capabilities of Dijkstra's Semaphore Primitives

for Coordination among Processes

Suhas S. Patil
Project MAC, M.I.T., Cambridge, Massachusetts

In multiprocessing, 1t is necessary to provide a means of interprocess

communication so that a cluster of processes whose actions interact or could
. interfere may cooperate among themselves for smooth operation, Semaphores and the’
P and V primitives were introduced by Dijkstra [1] for Just this putrpose,

These primitives have been very popular and have been used, gometimes in a

modi fied form, In many multiprocessing systems. Yet there has not been much
theoretical study to understand their nature, limitations, or capabilities.

Such a study is the subject of this paper. In contrast to the lack of s tudy

of these primitives, much work has been done by Holt and others in understanding
Petri nets [2,3], an abstract formalism for representing and studying asyn-
chronous concurrent systems. In this paper we will relate the P and V
primitives to Petri nets. The study will bring out the limitation and
capabilities of thege primitives and suggest a generalization of the P and V
primitives of Dijkstra,

We will begin our study of the P and V primitives with the following example
called "The Cigarette Smokers Problem." Before proceeding ahead it may be
recalled that a sempahore is a variable whose value can only be non-negative.
Instruction P[S] decrements the value of semaphore by 1 and 1f the value of
the gemaphore is 0, the execution of the instruction is held up until it becomes
1 or larger. This provides a way to allow a process to wait until
other processes catch up, Furthermore, 1if the value of the gemaphore is 1 and
several processes try to execute P[S] then only one of the processes is per-
mitted to complete execution of P[S] and others are held walting for the value
of the semaphore to become greater than 0. The instruction V[S] just increments

the value of the semaphore by 1.

Work reported herein was supported in part by Project MAC, an MIT research
project sponsored by the Advanced Research Projects Agency, Department of
Defense, under Office of Naval Research Contract Nonr-N00014-70-A-0362-000L,

The Clgarette Smokers Problem

Three smokers are sitting at a table, One of them has tobacco,
another has cigarette papers, and the third one has matches -- each
one has a different ingrédient required to make and smoke a cigarette
but he may not glve any ingredient to another. On the table in
front of them, two of the three ingredients will be placed, and the smoker
who hag the necesgary third ingredient should pick up the ingredients from
the table, make a cigarette and smoke 1t. Since a new set of ingredients
will not be placed on the table until this action is completed, the other
smokers who cannot make and smoke a cigarette with the ingredients on the
table must not interfere with the fellow who can., Therefore, coordination
18 needed among the smokets. The actions of the smokers without the

coordination are as follows,

X = the’ smoker with tobacco Y - the smoker with paper
o t pick up the paper o plck up the tobacco <f)
0 /-f

plek up the match pick up the match &5
roll the cigarette roll the clgarette
light the cigarette light the cigarette
smoke the cigarette smoke the cilgarette
return to ak raeturn to ay

Z - the smoker with matches

a, ! plck up the tobacco

plck up the paper

roll the cigarette
light the cigarette
smoke the cigarette

return to aa

To inform the smokers about the ingredients which are placed on the table,
three semaphores a, b and ¢ representing tobacco, paper and match respectively,
are provided. On placing an ingredient on the table, the corresponding
semaphore is incremented by performing a V[] operation., On the smokers' side
semaphores X, Y and 2 are used to signal that a cigarette has been smoked.
The smoker who completes smoking a cigarette performs the operation V[] on
the corresponding semaphore,

The smokers' problem is, then, to define some additional gemaphores and
processes, 1f necessary, and to introduce necessgsary P and V statements in
these processes so ag to attain the necegsary cooperation among themselves
required to ensure continued smoking of cigarettes without reaching a deadlock.
There is, however, a restriction that the process which supplies the
ingredients cannot be changed and that no conditional statements may be used.
The first restriction 1s'placed because the amokers are seeking cooperation
among themselves and therefore should not change the supplier, and the
gecond regtriction is justified because P and V primitives were introduced to
avold having to coordinate processes by repeatedly testing

a variable until it changes its value, and because the operation of making

and smoking a cigarette has no conditional actions. It will be seen that

the cigaraette smokers' problem has no solution.

To give a precise statement of the problem, we will present below the
processes involved, The set of processes in the enclosed area when taken together,
represent the agent who puts the ingredients on the table. It should be
recalled that semaphores a, b, and c represent tobacco, paper and match
regpectively, and the action of putting these ingredients on the table is
represented by V[] operation on the corresponding semaphores. Among the
processes representing the agent, such actions ate performed by the processes
Ra’ Rb and RC which represent the three possible actions of the agent,
Initially semaphore 8 18 1 and the procesges Ra, Rb and Rc compete to perform
P[s], and the process which Buccgééda puts the ingredients on the table
by performing V[] on two of the semaphores. Processes Bx, By and ﬂz detect
the completion of smoking of a cigarette; Bx performs V[e] when smoker X

e

{ndicates complation of smoking the cigarette by per forming V[X]. The
gemaphore s aserves to signal that it is time for the agent to place a new set

of ingredients on the table.

R
a R, R, the agent
r P[s]) Pls] r ! P[s]
V[b] Via)<_ Via]
V[c] vie] &
[e] (k] initially s = 1 and
Boto r, goto ry goto r a,b,c,X,Y and Z =0
By’ Plx] ﬂy= P[Y] B, P[z]
Visl Vis] Vsl
goto B goto B, goto B,
]
X . Y Z
o i P[b] oy P[a]fé:) @, Plal
P[c] Plc] /-~ P[b] the smokers
B i b
VIx] V(Y] viz]
goto ak goto d& goto dz

mssm The blank stands for some operation performed by the process
(in the case of the smoker this operation is that of smoking the cigarette).

attempt is made to represent theixr actlons by means

On the smokers' side an
do not correctly represent

of the processes X, Y and Zz. These processes, however,

their activity because of the possibility of a deadlock.
and process Y may perform Pla]

For example, in one

cage, tobacco and paper are placed on the table,
before process Z, the proceas which was supposed to perform P[a], and thereby
create a deadlock in which no process is able to proceed.

The smokerg' problem is to define additional semaphores and processes and
{ntroduce appropriate P and V statements 80 A8 to make them deadlock free.

alteration may, however, be made to the processes defining the agent.

g I

=5a

In order to obtain the necessary machinery to show that the smokers'
problem hag no solution, we will establish a correspondence between programs
using semaphores and Petri nets. A brief Introduction to Petri nets 1is given

below, but a more complete treatment of Petri nets can be found in the work
of Holt [2,3].

Petri Nets

Petri nets are directed graphs with two types of nodes called places and
transitions. Directed arcs connect places to transitions and trangitions to
places. An arc may not directly connect a place to a place or a transition
to a transition. The places can hold markers. A transition is said to be enabled
(ceady to fire) when all Input places of the transition have markers. When a
trangition fireg, 1t removes a marker from each input place and places a marker
in each of the output places. . A conflict between trangitions arises over a place
which is shared as a common input place, when both transitions are ready to
fire and the place has just one marker. In this situation only one of the
trangitions fires and the other is disabled. Simulation of the net proceeds
as trangitions fire changing the marking digtribution of the net. An example
of a Petri net is shown in Flgure 1b.

Petri net representation of processes

The flow of control in processes andlcoordination (harmonious cooperation)
among the processes can be expressed clearly in Petri nets. The use of Petri
nets for representation of processes simplifies analytic treatment of problems
especially when the processes do not use conditional statements as in the case of
the smokers' problem., In dealing with such processes, each instruction ig repre-
gented by a transition (Figure 1), The transitions corresponding to instructions
which are adjacent have a place in common; the place isl}n an output place of
the transition corresponding to the lnstruction which precedes and is an input
place of the transition corresponding to the instruction which follows. The
transitions corresponding to instructions other than the primitives P and V
for operation on gsemaphores have just one input place and one output place.

Jugt ag the instructions form a sequence in the process, the trgnsitions form

a chain, and a marker at a place in the chain denotes the place where control

[__IF

b)

Figure 1

P ow N =
~
T
=

flow of

P

2 3

5 ug u®u 9 p[sy,]

6 P[Sy] 10 2 ¢ 2+ Y

7 ye u 11 V[Sy]

8 v[sy.] _ goto 9

t
goko, 3 initially S_ = 1, 8
y y
macker

transition

Control in Processes and the corresponding P

etri nets

e

is., The movement of the marker through firing of transitions in the net
corresponds to flow of control in the process,

In addition to the places mentioned above, there is a place for each
gemaphore, A transition representing the instruction P[S8] has an additional
arc from the place corresponding to semaphore S mnd from the transition
corregponding to the instruction V[8], there is an additional arc directed
to the place corresponding to semaphore 8, 'The effect of the execution of
instruction P[S] and V[S] is now clearly seen; P[S] decrements the number of
markers at S by one and V[S] increments the number of markers at S by 1.

The movement of the marker representing flow of control i{s then stopped at a
transition representing P[S] until there is a marker at the place corresponding
to S f.e., until the value of semaphore S is greater than 0 (Flgute 1lb),.

In the Petri nets that represent flow of control in cooperating processes
where the processes do not use conditional gtatements, no more than one input
place of a transition is shared as input place with another transition. This
is because only places corresponding to semapﬁoresare shared as input places
by transitions and the P[] instruction operates only on a single semaphore.
Petri nets in which no more than one input place of a transition is shared as
input place with other transitions are called gimple Petri nets.

The desired coordination among the smokers can be expressed by the Petri
net shown in Figure 2. Note that this Petri net is not a simple Petri net.

A solution to the smokers' problem, however, if it exists, will provide a
simple Petri net equivalent to this net, but we will show that there does not
exist any simple Petri net equivalent to this net and thereby rule out any

golution to the smokers' problem.
The part of the net drawn with bold lines in Figure 2 is an Lnstance of

the two out of three net. It is a decoding net whose inputs are a pair of
markers and whose output tells which of the three possibilities that pair
repregents, This is the smallest of the class of decoding nets called r out
of n nets, The 2 out of 3 problem states that the 2 out of 3 net cannot be

transformed into an equivalent simple net. The author would like to acknowledge

that the 2 out of 3 net was brought to the attention of the author by
Jack B. Dennis, who also suggested how one might go about proving that there

A Petri net representing the
desired coordination.

The rest of the net corresponds
to the supplier of the
ingredients.

The 2 out of 3 net is
drawn with bold lines.

Figure 2 A Petri net representing the desired coordination

«ga-

is no simple Petri het equivalent to it. 'The proof given below is along
thogse lines.

Theorem, There 18 no simple Petri net equivalent to the 2 out of 3 net.

Proof: We will assume that there 18 a simple Patri net equivalent to the 2 out of
3 net and construct a sequence of inputs to the net which leads to malfunction.
Let a, b, and ¢ be the input pldces and X, Y and Z be the output places of the net.

Let T I and I, represent the three different inputs to the net. In the
ac

be

ab’ _
, markers are placed in the places a and b, and as a result the net

cage of Iab
should place a marker in the output place 2, the outputs corresponding to Iac
and Ibc are Y and X.
In what follows, the initial value of j is 0, and the S, is Ehe null sequence,
k)
S, is a specific sequence from the set of sequences (Iac + Ibc) where * 1g

J

the Kleene star, ,
1, Congider Pj, the set of places into which a marker cannot be put into when

the sequences of inputs to the net are taken from the set of sequences

S, (1 +1)*. We know that Pj 18 a non-empty set because the output place
ac ¢)

Z {which corresponds to the input Iab) ia ?n Pj.

2. Let the semi-degiee of a place in‘?j for a particular sequence from
the set of sequences i?j(lac + Ibc)*Iab be the length of the shortest
sequence of transition firings which puts a marker in that place starting
from the application of input I ab’ Furthermore, let the degree of a
place in Pj be defined to be its smallest semi-degree over the sat of
gequences in Sj(Iac + Ibc) Lip Now, pick a place from the set P with
the smallest degree and call it pj; 1f there is more than one such place,
any one of them will do., Since Pj ls of the smallest degree, at least
one transition which feads into pJ has no input places from Pj. We will
try to fill the input places of such a transition. As the net is a
gimple net, at most one input place of the transition may be a common
input place with another transition. The task of £f11ling such a plﬁée,
1f any, will be taken up only after the other places are filled because
the other places, not being shared, will keep the markers once they are
filled until the transition is fired.

-10-

3. Let p refer to the input place (of the transition) which we are trying

to f1l1ll, Since p 19 not 1in Pj there 1s a sequence in Sj(I i + Ibc)'lv

which puts a macker in p. Let this sequence be called 83. Now in attempting
to £111 the next input place we may have difficulty because there may be no
sequence in S'(Iac + Ibc)* which can put a marker in the place. If this is
the case let Sj+1
Otherwise continue to £111 the rest of the input places of that transition

be equal to 33 and repeat the above procedure from step 1.

and let the sequence of inputs which achieves this be denoted by S.

4. At each atep “above, Pj+} will be larger than P'J| because 1t will include all
members of E"1 and at least the place which we could not fill, Since at each
step the set PjF 1s larger than Pj the above process must terminate because
the net has a finite number of places., When the process terminaEes, we get

a sequence 8 from the get of sequences Sk(Iac + Ibc?’ a place P which 1s a
member of Pk and a transition t which feeds into Py and whose input places are
filled. Since all input places of the transition are filled, it can be fired
causing a marker to be placed in the place P Thus we have a contradiction
because by definition there is no sequence in Sk(Iac + Ibc)* which can cause

a marker to be placed in any place in Pk. This completes the proof.

The fact that the smokers' problem cannot be solved with semaphores and
the primitives P and V 18 revealing, but it should be remembered that in that
problem we disallowed the use of conditional statements. If conditional statements
';WereparmittEd ‘the coordination among the smokers could be expressed as showm

in Figure 3. The operation of the processes in this figure is explained below

with the help of Figura 4.

In the net of Figure 4, transitions r,, r, and t, produce two markers for
each marker placed in places a, b and c respectively. Thus, if markers are
placed in b and ¢, places S:, 8:, st and si get markers and transition x
fires placing a marker in place X. 1This i8 a correct operation except for
the unused markers left bahind in 3: and Sz . These markers will cause unwanted
firings of transitions y and z when a marker from the next input is placed in
place a . The net will operate correctly if we can find a way of removing the
unused markers so that they do not interfere with the next input. We could

do this if a transition could be made to undergo a dummy firing in which it

<1 b

g PIc) ne PLP] n: PLal
VISl | visy] VI Sal
VI 831 vi si) VIS
qoto 13 qoto ¥a qoko

oy PL Sy By me y: B
pLst)

Pt
ij x>0 then o 4-x-4
vIt.]
3259 ol
else
Vo]
PLty) {nitially %, y and z are 0
; p[ta‘] and s ty and t, are 1
yo-y +d
34—5#1 _
\'[tg] Note: instruction such as P[t,] locks
varfable x so as to avoid simul-
A LEL] taneous access to variable x.
v sdl
v(il
PIER1
HELP‘ft

Figure 3 A solution to the smokers' problem with a conditional
statement

Flgure 4 A Petri net for explanation of Figufe 3

~13-

could remove markers from the input places and not place any markers in the
output places. This 18 exactly what 18 done in the processes of Figure 3 with
the help of conditional statements and variableg X, y and z, If the transition x
1s fired when the variable x is greater than 0, the transition just removes
marker's from its input places but does not put any markers in its output places,
In order to remove the left over markers mentioned eatlier, say the marker in
place Si, we will set y to 1, £ill the other input place of the transition L
namely the place Si, and cause the transition to undergo a dummy firing.
In Flgure 3, processes Ty Ty and r, perform the task of transitions
Ty ¥y and ry regpectively and procegsses X, Y and Z perform the task of
transitions x, y and z with the provision for dummy operation. The reason
_why the variables x, y and 2z are ineremented by 1 instead of being set to 1 is that
this way 1t 1s not necessary to wait for the left over markers to be removed
before the next input is received.
The fact that a solution to smokers' coordination can be had with

the halp of conditional statements suggests that conditional statements

greatly enhance the capabilities of P and V primitives, DBelow we shall

examine just what type of coordinations can be had if we permit the use

of conditional statements. We will first examine the class of co-

ordinations corresponding to the conflict free Patri nets, and later

study the class of coordinations corresponding to the Paetri nets which

may have conflicts. In both cases we will find that with the use of

conditionﬁl statements, the P and V primitives are adequate for expressing

the coordinations. In considering the use of conditional statements the first

thing that comes to the mind is the repeated testing of a variable, say x and
y, to get a construction such as 'wait until x and y both become 1 and then

proceed with some given action," Such constructions are wasteful of com-

putational resources since the variables may be tested an arbltrary number of
times. As a result, programs using such constructions may not have any upper bound
on the amount of computation required to perform the necessary coordination.
Therefore, we wish to avoid such constrxuctions, and 1t 18 interesting to note

that we can always gat by without them as will be seen below,

Y

R
oly PLSW]

unshared
input places

PLSw)
& PL S‘;;] shaved
: i input places
PLS;] |

PrLtal lock a

if a>0 then ae-o0-y
VIital ~ unlock a

e B 5 U Braiien:
else
vita)
P[';kb] lock variables b,...,k
PCty]

b "; b+4 increment b,...,k s0 that the corresponding

H transitions will undergo dummy transitions
fg o k+d
Vit] _
s unlock b,...,k
V[tub] '
Vl:'s“] £111 the other shared input
Yk places of b,...,k
vi S,] ’
Ve Oy)
@
VEOwm) £111 the output places
VL ok
qete o

Figure 5 Processes for conflict free Petri nets

..15..

Coordination Corresponding to Conflict Free Petri Nets

A conflict free net is one in which two transitions which share an input
place are never enabled (ready to fire) at the same time. Thus the net is
spared from having to make a choice among transitions, Furthermore, an
enabled transition may proceed to fire without the fear of being disabled,

In programs corresponding to such nets, we have one process for each
transition. The generic arrangement of instructifon in such a process is shown
in Figure 5., 1In the program, the semaphore Sﬁ corresponds to the unshared
place u which in an input place of a and S; corresponds to the share place x
which ig an input place of transition a, Below we list the function of the

other variables and semaphores used in the processes,

variables used with transitions a,...,k respectively
for dummy firings.

y++.,t semaphores used as locks to avoid simultaneous references
a k' to corregponding variables a,...,k.

Sb _— sk semaphores representing the other shared input places of
i Y transitions b,...,k (i.e. the places which are hot shared

with transition a).

Oe,.i. Of gsemaphores representing the output place m of the transition
m " which 18 a common input place of the transitions e,..,f.

In understanding the operation of the processes, it will help to know
that for each shared input place x, there are semaphores S:,...,s:, one for
each trangition which feeds from it, and in the operation of the program
when a transition fills this place, all of these semaphores are incremented
so that the presénce of the marker may be broadecast to all transitions which
share that place. Later on when a transition fires plcking up the marker,
‘all of these semaphores are decremented by causing other transitions to do
through dummy firings. The dummy firing, as in Figure 3, are performed to
remove the unwanted markers, In order to do this correctly, the transition
Increments appropriate variables by 1 and increments the semaphores corre-

sponding to the other input shared places of these transitions,

sV

da’ PLSu]

Prssl
=T

B

PL Syl

PIC
E 1] Thege instructions resolve

' conflicts among transitlions.
pLel

Pl tal

if a»0Q then a<a-4
VItal
V[..C,_]
\”'.Cﬂ
Jete R,

else

Vital
PLE,]

{
PLE] the semaphores C's are ordered
be bl by their subscripts, and in the

i processes they must occur in that
ke W24 order

VIky]
vit,)
visl])
vi 83}
V['CI]

VECJ]
VO]
VLO%,)
viol)
gose e

Figure 6 Processes for Petri nets which may have conflicts

iy

Coordination Corresponding to Petri Nets With Conflict

Petri nets in general allow conflicts which represent a situation in which
two enabled transitions share an input place, In this case an arbitrary choice
of transitions must be made. The primitive P is capable of making such a
choice; as in the case when different processes perform P[S] and the value of
Sis 1. The generlc form of each process for Implementing coordination expressed
in a Petri net is shown in Figure 6 ., The technique employed here is similar
to that in the previous case of conflict free Petri nets (Figure 5) with the
only addition of gemaphores Cl’*‘l'cj to resolve the conflicts. Semaphores
Cis vens Cj correspond to conflict clusters [4] where a cluster is a set of
mutually conflicting transitions. In the process operations are performed
only on those clusters to which the transition belongs. _
It is interesting to note that the solutions presented above avoid arbitrary'
amounts of repeated testing of variables and thus there is a bound on the
number of instruction executions required for any given coordination,
Moreover, the method by which this is achieved 18 & general one and could be

usad in programming practice.

Generalized Primitives

Even though the P and V primitive when taken together with the conditional

statements, are pewerful enough to express the general class of coordinations

specifiable as Petri neta, they have a serious deficiency in that the processes
becomes unnecessarily complicated, This costas both in terms of the loss of
trangparency of the programs and in terms of the overhead the extra {instruc-
tions imply., Such indirect implementation of coordination would not have been
necessary if we had a generalized primitive such as P[Sl""’sk] which waits
for all gemaphores to become non-zero and then gimultaneously operates on all
of the semaphores. This instruction cannot be broken down into a sequence of
P[Sl],...,P[Sk] instructions. The sequence of instructions P[sl]""’P[Sk]
does not represent the same operation as the generalized instruction P[Sl,...,s]
because when not all semaphores are non-zero the generalized primitive does not
act on any semaphore but in the case of instruction P[SIJ,...,P[Sk] the process
decrements the gemaphores until it encounters one which is zero., When semaphores

are treated as resources, this has the effect of hoarding resources,

=18~

Structures for imp lementing Petri nets have been gtudied by the author
in his earlier work {4). Such structures could be used to {mplement P[Sl,...,S
{nstruction where k is some large but fixed number. When the number of sema-
phores on which this operation {s to be performed is larger than this number,
the compller could always break the {ngtruction into gmaller ones with the aid

of conditional statements by the method already presented.

BIBLIOGRAPHY

1. Dijkstra, E. W. Co-operating gequential processes. Programming Languages,
F. Genuys, Ed., Academlic Press, New York 1968, [First published as
Report EWD 123, Departmént of Mathematics, Technological University,
Eindhoven, The Netherlands, 1965.1]

k]

92, Holt, A, W., et. al., Final Report of the Information System Theory Project.

Technical Report RADC-TR-68-305, Rome Alr Development Center, Griffiss Alr
Forca Base, New York, 1968. ’

B s - AT At PR T .

3. Holt, A, W. and F. Commoner, Events and Conditions. Record of the Project
MAC Conference on Concurrent SygCemd and Parallel Computation, Association
for Computing Machinery, June 1970, pp 3-52,

4. Patil, S. 8. Coordination of Asynchronous Events. Report MAC-TR-72,
Project MAC, M.1.T., Cambridge, Massachusetts, June 1970.

