
Concurrent Computation of Bisimilarity
Distances

Qiyi Tang

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

Abstract. Bisimilarity distances capture the similarity of states of la-
belled Markov chains. There are several ways to compute these distances.
The algorithm we are interested in is by Bacci et al. They proposed an
on-the-fly algorithm in which several optimizations are applied. We im-
plement the algorithm without these optimizations and parallelize it.
We test the correctness of the implementations by generating thousands
of random labelled Markov chains and use our algorithms to compute
the bisimilarity distances. We also test the performance of the sequential
and concurrent implementations by recording the time spent on comput-
ing the bisimilarity distances of these Markov chains. The performance
test shows that the sequential implementation is much faster than the
concurrent implementation.

1 Introduction

Markov chains or discrete time Markov chains can model many real life proba-
bilistic processes. We give the formal definition of Markov chain (Definition 1)
later. In order to do state space reduction it is sometimes useful to know whether
two states are similar or not. Probabilistic bisimulation, an extension of bisim-
ulation, is a binary process relation introduced by Larsen and Skou [1]. If two
Markov chains are bisimilar, they should match each other’s moves. Also, the
probabilities associated with the moves should be the same.

Desharnais et al., however, mentioned that in real-world applications two
Markov chains might be very similar but are not bisimilar ([2]). Therefore, in-
spired by the Kantorovich metric, Desharnais et al. proposed a pseudo-metric
to measure the distances of labelled Markov chains ([2]). We call these distances
bisimilarity distances, as done in the paper of Bacci et al. [3]. While there are
several ways to compute the bisimilarity distance, for example, van Breugel and
Worrell compute it using linear programming ([4]), we present the one which is
proposed by Bacci et al. [3].

We start with basic concepts namely Markov chain, transportation problem
and coupling. With these concepts explained, we are able to describe the com-
putation of bisimilarity distances. The sequential algorithm is shown in the next

2

section. Based on the sequential algorithm, ideas of making the algorithm con-
current are discussed. We implement a concurrent version of the algorithm which
passes the correctness test. Finally, we focus on testing the performance. The
performance of the sequential and concurrent implementations are evaluated on
a machine in the Intel R©Manycore Testing lab (MTL)1.

2 Computation of bisimilarity distances

In this section, we give the definition of labelled Markov chains and introduce the
transportation problem first. Then we will characterize the notion of bisimilarity
distances.

Definition 1 A labelled Markov Chain is a tuple (S,A,P, l) where

– S is a finite, non-empty set of states,
– A is a finite, non-empty set of labels,
– P : S×S → [0, 1]∩Q is the transition probability function such that for all

states s ∈ S,∑
s′∈S

P(s, s′) = 1,

– l : S → A is the labelling function.

Example 1 The Markov chain depicted by

s2

s0 s1

1

1
4

3
4

2
3

1
3

has three states and five transitions where state s0 is the initial state. The tran-
sition probability function can be easily extracted from the above diagram. For
example, P(s0, s1) = 3

4 and P(s2, s2) = 1. The set of labels is {blue, red}. As
can be seen in the Markov chain, s0 and s1 are labelled blue and s2 is labelled
red.

Let’s formalize balanced transportation problem as it is used in the algorithm
of computing the bisimilarity distance. The problem is to minimise the total
cost of shipping from a number of sources to a number of sinks. A balanced
transportation problem TP(c, s, d) consists of

1 The machine in the IntelR©Manycore lab has 4 CPUs of XeonR©E7-4860 @ 2.27GHz.
There are 80 cores in total.

3

– n sources and a supply function s : [1..n]→ R+
0 , s(i) denotes the amount of

units sourcei supplies
– m sinks and a demand function d : [1..m]→ R+

0 , d(i) denotes the amount of
units sinki demands

– A cost function c : [1..n]× [1..m]→ R+
0 , c(i, j) (i ∈ [1..n], j ∈ [1..m]) denotes

the cost of transporting one unit from sourcei to sinkj .

A balanced transportation problem requires the total supplies to match the
total demands, that is,

∑
i∈[1..n] s(i) =

∑
i∈[1..m] d(i). The problem is to find a

shipping function x : [1..n]× [1..m]→ R+
0 such that

– The shipping function and the supplies function satisfy the following equa-
tion,

∀i ∈ [1..n],
∑

j∈[1..m]
x(i, j) = s(i) (1)

– The shipping function and the demands function satisfy the following equa-
tion,

∀j ∈ [1..m],
∑

i∈[1..n]
x(i, j) = d(j) (2)

– x = arg min
x

∑
i∈[1..n],j∈[1..m]

x(i, j) · c(i, j), which means the shipping func-

tion x leads to the minimum total cost.

Fig. 1: A balanced transportation problem TP (c, s, d)

Example 2 The following is a balanced transportation problem. Figure 1 is a
Markov chain (S,A,P, l). The set of states {v1, v2, v3} acts as the sources while
the set of states {u1, u2} acts as the sinks. The transition function P specifies
the supplies and demands, e.g. the supply of the source v1 is P(s, v1) and the
demand of the sink u2 is P(t, u2). The cost function c is shown in the table below.

Cost Function
u1 u2

v1 0.6 0.4
v2 0.2 0.8
v3 0.9 0.1

4

A possible shipping function is illustrated in Figure 2. The total cost in this
case is 0.3× 0.6 + 0.2× 0.4 + 0.25× 0.8 + 0.25× 0.1 = 0.485. By applying one of
the algorithms (e.g. Chapter 8 of [5]) which checks for the optimality, this cost
is found not to be minimal so that the shipping function is not optimal.

Fig. 2: A shipping function for TP (c, s, d)

According to Chen et al. [6], the bisimilarity distance is characterized based
on the notion of coupling, the definition of coupling is given in the following.

Definition 2 A coupling for M = (S,A,P, l) is a Markov chain C = (S ×
S,A×A,ω, l) where

– ω ∈ S × S → [0, 1] s.t. ∀s, t ∈ S, ω((s, t), ·) ∈ P(s, ·) ⊗ P(t, ·) which means
∀s, t ∈ S,

∀v ∈ S.
∑
u∈S

ω((s, t), (u, v)) = P(s, v) (3)

∀u ∈ S.
∑
v∈S

ω((s, t), (u, v)) = P(t, u) (4)

– l : S × S → A×A and ∀s, t ∈ S. l(s, t) = (l(s), l(t))

Given a coupling C = (S × S,A × A,ω, l) and λ ∈ (0, 1], the operator Γ Cλ :
[0, 1]S×S → [0, 1]S×S , for d : S × S → [0, 1] and s, t ∈ S, is defined by:

Γ Cλ (d)(s, t) =

{
1 if l(s) 6= l(t)
λ ·

∑
u,v∈S

d(u, v) · ω((s, t), (u, v)) if l(s) = l(t) (5)

Definition 3 Given a Markov chain M and a discount factor λ ∈ (0, 1], the λ-
discounted bisimilarity distance ∆Mλ forM is ∆Mλ = min

{
γCλ | C is a coupling for M

}
where γCλ is the least fixed point of Γ Cλ .

Note that the Equation 3 and Equation 4 are very similar to Equation 1 and
Equation 2. Therefore according to Definition 3, the computation of bisimilarity
distances boils down to solving the transportation problem TP (d, π(s, ·), π(t, ·))
for every pair of states (s, t) ∈ S × S.

5

3 Sequential algorithm

According to Definition 3, the sequential algorithm is to search for a coupling
which gives the minimum value of γCλ . In the paper of Bacci et al. [3] an optimized
on-the-fly algorithm is implemented. Instead of presenting that algorithm, we
give the pseudocode of the algorithm without the optimizations mentioned in
the paper. The correctness of this unoptimized algorithm will be proved in the
future.

Given a labelled Markov chain M = (S,A,P, l) and a discount factor λ,
the goal is to compute the λ-discounted bisimilarity distances for every pair of
states in the Markov chain. We use a matrix to store these bisimilarity distances.
The algorithm is divided into two phases. The first phase involves a series of
initializations. If a pair of states have different labels, we set the distance for
this pair to be 1; if two states are the same, we set the distance to be 0. For all
the other pairs, where the two states are different but have the same label, we
assign arbitrary couplings. Based on the initial couplings, the distances of the
states are then computed.

Coupling can also be defined in terms of a transportation problem. The
coupling for a pair of states (s, t) is the shipping function of the transportation
problem TP (d,P(s, ·),P(t, ·)), where P(s, ·) is the set of supplies and P(t, ·) is
the set of demands, d is the cost matrix and in this algorithm, it is the matrix
of bisimilarity distances.

The second phase is a loop and the stop criterion is all the couplings are
optimal. In each iteration, we pick a pair of states for which the coupling is not
optimal, we then replace the non-optimal coupling with the optimal one. We
recalculate the distances with the updated coupling and then check if the stop
criterion is satisfied.

The algorithm is presented in Algorithm 7 in the appendix. There are two
inputs to this algorithm: a Markov chain and a discount factor. Ω is a coupling
and it contains for every state pairs (s, t) a coupling in P (s, ·)⊗ P (t, ·). The set
G includes all pair of states where the two states have different labels.

The first part (line 1 − 15) serves as initialization of the algorithm. We set
distances to be 1 if the pair of the states have different labels and 0 if the pair of
states are the same. We arbitrarily initialize Ω for the pair of states which are
not in the set G. Then Algorithm 6 is called to calculate γCλ given the current
couplings.

The second part (line 16 − 20) of Algorithm 7 is a loop. The stop criterion
is when all the couplings are optimal. It iteratively updates Ω[(s, t)] while it
is not optimal for the pair of states (s, t). After assigning the optimal schedule
TP (d,P(s, ·),P(t, ·)) to Ω[(s, t)], d is recomputed and updated.

6

Algorithm 6 is a subroutine which calculates γCλ given the current coupling.
To compute γCλ , the least fixed point of Equation 5, is equivalent to comput-
ing the reachability probability of every pair of states (s, t) in Ω to {(s, t) ∈
S × S | l(s) 6= l(t)}. In this case, the coupling is treated as a normal labelled
Markov chain. We can compute the above-mentioned reachability problem by
solving the following linear equation: x = λ(A ·x+b), where x = (x(s,t))(s,t)∈G′ ,
A = (Ω[(s, t)](u, v))(s,t),(u,v)∈G′ , b = (

∑
(u,v)∈GΩ[(s, t)](u, v))(s,t)∈G′ and G =

{(s, t) ∈ S × S | l(s) 6= l(t)}, G′ = (S × S)\G.

Fig. 3: A Markov chain. Adapted from [3].

Example 3 We present an example which is adapted from the paper by Bacci
et al. ([3]). The Markov chain shown in Figure 3 and λ = 1 are the two inputs
of Algorithm 7. For every pair of states (s, t) /∈ G, we assign an arbitrary cou-
pling for that pair. For example, the couplings for the pair (1, 4) and (3, 4) are
initialized according to the first two tables in Table 1.

Coupling for (1, 4)

(1, 4) 1 2 3

2 1
3

1
3

3 1
3

1
3

4 1
6

1
6

6 1
6

1
6

1
3

1
3

1
3

Coupling for (3, 4)

(3, 4) 1 2 3

2 1
3

1
6

1
2

3 1
6

1
3

1
2

1
3

1
3

1
3

Optimum coupling for (1, 4)

(1, 4) 1 2 3

2 1
3

1
3

3 1
3

1
3

4 1
6

1
6

6 1
6

1
6

1
3

1
3

1
3

Table 1: couplings

7

Then we call Algorithm 6 to compute γΩλ . It checks all the couplings and the
coupling for (1, 4) is found not optimal for TP (d,P(1, ·),P(4, ·)). The optimal
shipping function for the current cost function d is shown in the third table of
Table 1. It is set to be the new coupling for (1, 4). Then Algorithm 6 is called
again. It then checks all the couplings and found the coupling for (1, 4) is now
optimal. However couplings for other pairs may not be optimal, and therefore
the algorithm may continue until all the couplings are optimal.

4 Concurrent algorithm

There are two phases in the algorithm. In the first phase, we create several
threads to initialize the couplings as shown in Algorithm 1. We divide the pairs
in the set toCompute into disjoint subsets and each thread is working on one
subset.

Algorithm 1: Couplings initializations

Data: Markov chain M = (S,A,P, l);
toCompute = {(s, t) ∈ S × S|l(s) = l(t) ∧ s 6= t}; work(i) ⊂
toCompute and ∪iwork(i) = toCompute

1 Thread i (work(i)):
2 for all (s, t) ∈ work(i) do
3 pick ω ∈ P(s, ·)⊗P(t, ·);
4 Ω[(s, t)]← ω;

5 end

In the second phase of the algorithm, we parallelize the matrix computation
in the method Discrepancy. The matrix A is divided into several rows, where
each thread deals with several contiguous rows of A. Each thread is executing
Algorithm 2 and it waits at the barrier for all the other threads. The last thread
which reaches the barrier will execute Algorithm 3. The computation result of
Algorithm 3 will decide if all the threads should continue the computation or
not by setting the shared boolean variable to true or false.

If we combine the results as described in Algorithm 3, we need to create
threads in every iteration in the second phase. In order to create threads just
once, Algorithm 3 is modified into Algorithm 4 where we also check if the stop
criterion of the second phase is satisfied. The complete concurrent algorithm is
presented in the appendix.

8

Algorithm 2: Concurrent calculation of linear system

Data: matrix Am,n, vectors B, X and C, G← ∅, a barrier shared by all
the threads and a boolean called loop which is shared by all the
threads

1 G′ ← S × S \G;
2 A← (P(s, t))s,t∈G′ ;
3 b← (

∑
t∈G

P(s, t))s∈G′ ;

4 Thread i (startRow, endRow)
5 while !loop do
6 for ∀i, startRow ≤ i < endRow do
7 ci = λ(AiX + bi)
8 end
9 barrier.wait();

10 end

Algorithm 3: Combine the results

Data: vectors X, C;a boolean called loop which is shared by all the threads;
1 loop = true;
2 for int i = 0; i < n; i+ + do
3 if |ci − xi| > ε then
4 loop = false;
5 end
6 xi = ci; //change X to be C
7 ci = 0.0; //reset entries of C to be 0.0;

8 end

9

Algorithm 4: Combine the results

Data: vectors X and C; a boolean called loop which is shared by all the
threads; Markov chain M = (S,A,P, l); the set of state pairs
toCompute;

1 loop = true;
2 for int i = 0; i < n; i+ + do
3 if |ci − xi| > ε then
4 loop = false;
5 end
6 xi = ci; //change X to be C
7 ci = 0.0; //reset entries of C to be 0.0;

8 end
9 if loop then

10 while ∃(s, t) ∈ toCompute. Ω[(s, t)] not optimum do
11 ω ← optimum shipping function for TP (d,P(s, ·),P(t, ·));
12 Ω[(s, t)]← ω;
13 loop = false;
14 break;

15 end

16 end

5 Implementation in Java

Figure 4 illustrates the class diagram of the sequential algorithm. Since the
transportation problem is an important part of the algorithm, we implement
the TPLP class. The TPLP class has three fields, namely source, destination
and schedule. source is an array of doubles which stores the supplies and sim-
ilarly destination stores the demands. schedule is a two dimensional array of
doubles which stores the coupling. An initial coupling will be computed and
stored in schedule when the method initialSolution is called. The method
initialSolution uses the northwest corner rule ([7]) to generate an initial sched-
ule of the transportation problem. The method isOptimal checks if the current
coupling is optimal for a given cost matrix. The method getOptimal computes
the optimal schedule given a cost matrix, in which we use SimplexSolver of
the org.apache.commons.math3.optim.linear to obtain the optimal solution.

We implement a SimpleMatrix class to do simple operations such as re-
turning a row of a matrix. We also have a Pair class which represents a pair of
states.

In the Computation class, the private method getBisDist implements Al-
gorithm 7 and the other private method computeDescrepancy is the implemen-
tation of Algorithm 6. A labelled Markov chain is represented by the number of

10

Fig. 4: Sequential Program Class Diagram.

states, an array of real numbers as the labelling function and a transition prob-
ability matrix. In order to compute the distances of a labelled Markov chain, we
can construct a Computation object which takes the input Markov chain and
the discount factor. We can call the method getDistances on the Computation
object to get the matrix of bisimilarity distances.

In the implementation of the concurrent algorithm, we use a CyclicBarrier
object and a AtomicBoolean object. Each thread is executing Algorithm 2 and
it waits at the barrier for all the other threads coming to the barrier. The last
thread which reaches the barrier will execute Algorithm 4, which decides if all the
threads should continue the computation or not by setting the shared boolean
variable to true or false.

6 Correctness test

We generate thousands of random labelled Markov chains using the Erdos Renyi
model [8] and compute the bisimilarity distances using the algorithm in [3]. We
then use our sequential and the concurrent programmes to compute the distances
for the same set of Markov chains. We save the results in files and use diff

11

command to compare these results. For the concurrent algorithm, we also test
the computation by using different number of threads.

number of states 5 10 20 40
number of Markov chains 1000 200 50 50

The table above shows how many Markov chains we generate randomly cor-
responding to the number of states. The accuracy of the distance is set to be
0.000001 (10−6) and the discount factor λ is set to be 0.99. For the concurrent
algorithm, we test with different number of threads, namely 5, 10, 20, 40.

The results generated by the sequential and the concurrent programmes are
all the same. Compared to the results of reference algorithm, there are a few
entries (around 4 in 1000) which have tiny differences of 0.000001 (10−6).

7 Performance test

7.1 Test Set-up

We generate random labelled Markov chains using the Erdos Renyi model and
compute the bisimilarity distances using the sequential algorithm in the con-
current algorithm presented in the previous sections. We record the time spent
on each computation and compare the average time spent on each size of the
Markov chain.

number of states 5 6 7 8
number of Markov chains 200 200 200 200

The table above shows that our measurement has been made on a collection
of Markov chains varying from 5 to 8 states. For each n = 5, ..., 8, we randomly
generate 200 Markov chains. The accuracy of the distance is set to be 0.000001
(10−6) and the discount factor λ is set to be 0.99. For the concurrent algorithm,
the number of threads under the test varies from 2 to 32.

7.2 Results

Figure 5 shows the average running time on the Markov chains with 5 states
versus the number threads. The sequential algorithm takes around 4.618 ms
to compute one instance, while the concurrent algorithm no matter how many
threads there are takes more than 21 ms. It is obvious that the concurrent
algorithm is much slower than the sequential one.

Figure 6 shows the relationship of average overhead of creating threads and
the number of threads when the number of states is in the range of 5 to 8. The

12

Fig. 5: The bar chart shows the running time versus the number of threads for a Markov
Chain with 5 states. The vertical axis is the running time in milliseconds. The horizontal
axis is the number of threads in the range of 1 to 32. The data of 0 threads corresponds
to the sequential programme.

time spent on creating the threads is almost the same for different number of
states when the number of threads is from 1 to 12. It can be seen from the graph
that the larger the number of states is, the more overhead there is. It is due
to the fact that it takes more time to divide the work among the threads when
there are more states.

Fig. 6: The line chart shows the overhead of creating threads versus the number of
threads for Markov Chains with 5-8 states. The vertical axis is the running time in
nanoseconds. The horizontal axis is the number of threads in the range of 1 to 32.

Figure 7 shows the average running time versus the number threads in com-
puting the Markov chains with 5 to 8 states. As can be seen in the graph,
regardless of the number of states the sequential program always performs bet-

13

ter than the concurrent program. Each data point is the result of 200 runs. The
standard deviation of the sequential programme is approximately 10ms for any
number of states. The table below shows the standard deviation in milliseconds
for the concurrent program when the number of states is from 5 to 8.

number of states 5 6 7 8
overhead 24 40.5 63 114.5

Fig. 7: The line chart shows the running time in millisecond versus the number of
threads on the Markov chains with 5-8 states. Each line represents the running time
on Markov chains with a fixed number of states.

The results of the concurrent program are poor compared with the sequential
program. To see whether the concurrent initialization provides any performance
gain, we test the concurrent implementation by replacing the concurrent initial-
ization with the sequential one. It turns out that concurrent initialization does
not actually improve the performance. Figure 8 compares the running time on
the Markov chain with 5 states of the concurrent program and the one with a se-
quential initialization. It shows that the concurrent initialization slows down the
program. It is probably because that there is a lot more time spent on creating
new threads and bookkeeping than the time saved by the concurrent execution.

14

Fig. 8: The line chart compares the performance of the concurrent program and the
one with sequential initialization on the Markov chain with 5 states. The green line
is the program with sequential initialization while the blue one is the one which has
concurrent initialization.

7.3 Analysis

The results indicate that the concurrent program is 4 to 5 times slower than the
sequential program. We are keen to learn why the concurrent matrix computation
does not gain us any performance. The possible answer might be that the sizes
of the matrices in our test are so small that the time spent on bookkeeping and
threads scheduling exceeds the speed-up brought by concurrent computation. To
verify it, we run a test on the matrix computations to see the relationship of the
running time versus the size of the matrices.

We take out the part of program which does the matrix computation from
both the sequential program and the concurrent program. We then generate
matrices of different sizes and test the performance of them separately. Figure 9
illustrates the running time of computation versus the number of threads for
different sizes of matrices. It is noticed in the graph that the concurrent compu-
tation is slower than the sequential one when the size of the matrix is less than
128. The performance of the concurrent algorithm turns out to be better than
the sequential one as the size of the matrix grows.

The above test well explains why our concurrent algorithm is much slower
than the sequential algorithm. In our performance test, the Markov chains un-
der the test have 5 to 8 states which fixes the matrix size to be at most 64.
However the above test shows that the concurrent algorithm is slower than the
sequential one when the matrix size is less than or equal to 128. In addition, in
the concurrent algorithm which computes the bisimilarity distances there might
be extra overhead by taking into account the use of the barrier.

15

Fig. 9: The line chart shows the running time in milliseconds versus the number of
threads for different matrix sizes. The matrix doubles in size from 16 to 16384.

We increase the number of states to 50 and find the concurrent program is
still slower than the sequential program. The sequential program takes about
23 minutes on average (10 Markov chains under the test) and the concurrent
program with 64 threads takes about 62 minutes on average.

8 Conclusion

Bisimulation distance is a pseudo-metric which could be used to describe the
similarity of two probabilistic processes. Bacci et al. claimed that the on-the-fly
algorithm they came up with was more efficient than other algorithms ([3]). In
this paper, we study if it is possible to improve the performance of the algorithm
by making it concurrent.

Our concurrent implementation has a very limited amount of concurrency
which is due to the data dependencies in the second phase of the algorithm. It
is critical to determine if the algorithm can be further parallelized. We tested
the correctness of both the sequential and concurrent implementations. We are
confident that the implementations are correct since the results are almost the
same compared with the results of the algorithm by van Breugel and Worrell.

We tested the performance of the concurrent implementation and the se-
quential one on a machine in the Intel MTL which has 80 cores. The test shows
that there is no performance improvement in our concurrent implementation. We
then ran a test on the computation of the matrix and verified that the concurrent
program would be slower when the matrix size is less than 128. We changed the
test settings and found the concurrent implementation did not outperform the
sequential one when the Markov chains have 50 states. The test results seem to
suggest that the algorithm in [3] is not easy to be parallelized.

16

Acknowledgement

We thank the team at Intel’s Multicore Testing Lab for providing us access to
their machine.

References

1. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: Conference
Record of the 16th ACM Symposium on Principles of Programming Languages
(ACM). (1989) 344–352

2. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theoretical Computer Science 318(3) (2004) 323 – 354

3. Bacci, G., Bacci, G., Larsen, K.G., Mardare, R.: On-the-fly exact computation of
bisimilarity distances. In Piterman, N., Smolka, S.A., eds.: Proceedings of 19th
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Volume 7795 of Lecture Notes in Computer Science. Springer (2013) 1–15

4. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances
in probabilistic transition systems. Theoretical Computer Science 360(1–3) (2006)
373 – 385

5. Hillier, F.S., Lieberman, G.J.: Introduction to Operations Research, 4th Ed.
McGraw-Hill Higher Education, Boston , USA (2005)

6. Chen, D., van Breugel, F., Worrell, J.: On the complexity of computing probabilistic
bisimilarity. In Birkedal, L., ed.: Proceedings of the 15th International Conference
on Foundations of Software Science and Computational Structures (FOSSACS).
Volume 7213 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2012) 437–451

7. Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley; 4 edition (2009)
8. Erdős, P., Rényi, A.: On the strength of connectedness of a random graph. Acta

Mathematica Hungarica 12(1) (1961) 261–267

17

A Sequential algorithm

Algorithm 5: Computation of Bisimilarity Distances

Data: Markov chain M = (S,A,P, l); discount factor λ
1 Ω ← ∅; d← empty; G← ∅;
2 for all (s, t) ∈ S × S do
3 if l(s) 6= l(t) then
4 d(s, t)← 1;
5 G← G ∪ (s, t);

6 end
7 else if s = t then
8 d(s, t)← 0;
9 end

10 else
11 pick ω ∈ P(s, ·)⊗P(t, ·);
12 Ω[(s, t)]← ω;

13 end

14 end
15 Discrepancy(λ);
16 while ∃(s, t) ∈ S × S. Ω[(s, t)] not optimum do
17 ω ← optimum shipping function for TP (d,P(s, ·),P(t, ·));
18 Ω[(s, t)]← ω;
19 Discrepancy(λ);

20 end

Algorithm 6: Discrepancy

Data: discount factor λ
1 G′ ← S × S \G ;
2 A← Ω[(s, t)](s′, t′)(s,t),(s′,t′)∈G′ ;
3 b← (

∑
(s′,t′)∈GΩ[(s, t)](s′, t′))(s,t)∈G′ ;

4 x̄← x = λAx + λb;
5 for (s, t) ∈ G′ do
6 d(s, t)← x̄(s, t);
7 end

B Concurrent algorithm

18

Algorithm 7: Computation of Bisimilarity Distances

Data: Markov chain M = (S,A,P, l); discount factor λ; number of threads
numOfThreads

1 Ω ← ∅; d← empty; G← ∅; toCompute← ∅;
2 for all (s, t) ∈ S × S do
3 if l(s) 6= l(t) then
4 d(s, t)← 1;
5 G← G ∪ (s, t);

6 end
7 else if s = t then
8 d(s, t)← 0;
9 end

10 else
11 toCompute← toCompute ∪ (s, t);
12 end

13 end
14 divide toCompute into subsets, each one is work(i);
15 create numOfThreads threads;
16 Couplings initializations (Algorithm 1);
17 create numOfThreads threads;
18 Concurrent calculation of linear system (Algorithm 2);
19 Combine the results (Algorithm 4);

