
Concurrent Priority Queue
Using Lock-based Skiplist

Mingbin Xu

Department of Computer Science and Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3

Abstract. This paper provides an approach of implementing concurrent
priority queue using a lock-based skiplist. Skiplist is a probabilistic alter-
native to balanced trees. Its distributed nature makes it extremely suit-
able for concurrency. Previous works attempted to wrap a non-blocking
concurrent skiplist into a priority queue. However, modification of non-
blocking algorithms is generally complex. In this paper, we will review
an optimistic lock-based concurrent skiplist implementation, adapt it for
concurrent priority queue and evaluate its performance.

1 Introduction

The proliferation of multi-core computers have been pervasively affecting how
we develop software. It poses increasingly more programming challenges. Data
structures and algorithms, while classical, are no longer practical for parallel
architectures. Priority queue is one of the fundamental data structures with
rich applications, ranging from bandwidth management to discrete event emu-
lation.

Many efforts have been devoted to handling overlapping queue operations in a
concurrent setting. Known solutions include a tree-based structure by Shavit and
Zemach [9], a heap-based structure by Hunt et al. [5] and recently a skiplist-based
structure by Shavit and Lotan [8]. One drawback of the first two approaches is
that the underlying data structures require complex rebalancing and central-
ized lockings, which may cause bottlenecks and contention. As shown in [8],
skiplist outperforms other alternatives with relatively simpler implementation.
However, the underlying skiplist algorithm credited to Pugh [7] is still consid-
ered complicated compared with the one proposed by Herlihy et al. [4] whose
synchronization is optimistic and lazy. This paper aims to examine concurrent
priority queues based on this simpler synchronization.

2 Priority Queue

A priority queue is a set of items where each item is assigned a priority indicating
its importance, conventionally the smaller the better. Item priorities are not

2

necessarily distinct and may be time varying. Items with a higher priority are
removed before those with a lower priority, irrespective of when they were added.
A priority queue must at least support two operations: the insert operation to
add an item to the set, and the deleteMin operation to remove and return the
item with highest priority or smallest score. Heap structures, leftist heap [1] and
skewed heap [10] for instance, are the most popular backbone for priority queues,
giving O(log(n)) time complexity for both queue operations. Variants such as
binomial heap [11] and Fibonacci heap [2] perform faster on certain operations.
Besides, priority queues can be modeled by simple linear data structures such
as sorted arrays and sorted lists.

Listing 1: PriorityQueue Interface

1 public interface PriorityQueue <K extends Comparable <K>, V> {
2 /** Associates the specified item(v) with the specified
3 * priority(k) in this priority queue.
4 * @param k The priority associated with the new
5 * item.
6 * @param v The value of the item to be stored.
7 * @return The return is implementation -specific. If
8 * duplicate is allowed , this method should
9 * always return true; otherwise , when

10 * duplicate is hit , it does NOT put the item
11 * in the queue and returns false. */
12 public boolean insert(K k, V v);
13

14 /** Deletes and returns an item with highest priority.
15 * @return An item with highest priority. */
16 public V deleteMin ();
17 }

3 SkipList

Fig. 1: This example is a skiplist of 6 items. The bottom list contains
all items. The lists above are the sublists of the lists below them. In
order to search for the item 8, traversal begins at the leftmost node of
the topmost level. At each level, move rightwards until a key greater
than or equal to what is searched for is hit. If such a key has been hit,
go one layer down and repeat this process. As seen in this example,
an ”express” from 0 to 7 at the second topmost level skips 2 and 5.

Skiplist [6] is a probabilistic data structure that allows efficient search, insertion
and removal. A skiplist maintains a collection of sorted linked hierarchy, which

3

mimics, with some randomization, a balanced search tree. Searching starts with
the sparsest linked list in a top-down fashion, traversing until the largest item
smaller than the sought is found at each level. Fast searching is made possible by
skipping over a few elements at each level. Figure 1 shows a skiplist with integer
keys. The higher-level lists serve as expresses to the lower-level lists. The bottom
level is a regular sorted linked list with all items. Each item has a probability
of 0.5 to be chosen in the level above. More formally, an item is present at level
i with probability 0.5i. For example, the nodes at level 0 have a chance of 0.5
to appear at level 1, and each node at level 1 will be promoted to level 2 with
probability 0.52. Thus, roughly speaking, level i contains n ∗ 0.5i items, and each
link at level i skips 2i items, where n is the number of items in the list.

The structures of a skiplist and a skiplist node are detailed in Figure 3 (UML)
and Listing 6 (Appendix). It is convenient to add two sentinels head and tail
with priorities −∞ and +∞ respectively. Each skiplist node, be it sequential or
concurrent, stores an array of skiplist node references which are its successors at
all levels. Listing 2 shows the getPredecessorsAndSuccessors method. It tra-
verses the skiplist with predecessors and successors arrays starting from head
at the highest level. Given target to be searched, the getPredecessorsAndSuccessors
method descends from one level to another (Line 15-26). At each level it contin-
uously sets current to be the successor of predecessor until it encounters a node
whose priority is larger than the one sought (Line 17-20). If it locates a node
with a matching priority, it records the height of the node in levelFound (Line
21-23). Before going one level down, getPredecessorsAndSuccessors also puts
predecessor and successor in the arrays of predecessors and successors (Line
24-25). If it finds target, predecessor itself is target; otherwise it is the largest
node that is smaller than target. Figure 1 demonstrates the process of search.
When performing insert and remove, one could keep track of the predecessors
and the successors of the search path and then re-connect the predecessors and
the successors, as depicted in Figure 2.

It is straightforward to adapt skiplist to implement a priority queue of items
tagged with priorities. Skiplist is a collection of ordered items, ensuring that
high-priority items appear at the front of the list. The insertion of a skiplist-
based priority queue therefore reuses the interface from a skiplist without any
modification. Since the bottom level contains all items, the very next node to
which head points, if not tail, is the smallest.

Listing 2: getPredecessorsAndSuccessors of LazySkipListPriorityQueue and
CoarseSkipListPriorityQueue

1 /** @param target The node to be sought.
2 * @param predecessors Used to retrieved the largest nodes at each
3 * level NOT greater than target.
4 * @param successors Used to retrieved the smallest nodes at each
5 * level greater than target.
6 * @return It guarantees to return -1 if invoked by insert () because
7 * Node class imposes uniqueness; between 0 and 32 (inclusive)
8 * if invoked by deleteMin () because deleteMin () removes the
9 * very node which must exist. */

10 private int __getPredecessorsAndSuccessors (

4

11 Node <K, V> target , Node <K, V>[] predecessors ,
12 Node <K, V>[] successors) {
13 int levelFound = -1;
14 Node <K, V> predecessor = __head;
15 for (int i = MAX_LEVEL; i >= 0; i--) {
16 Node <K, V> current = predecessor.__next[i];
17 while (current != __tail && target.compareTo(current) > 0) {
18 predecessor = current;
19 current = predecessor.__next[i];
20 }
21 if (levelFound == -1 && target.compareTo(current) == 0) {
22 levelFound = i;
23 }
24 predecessors[i] = predecessor;
25 successors[i] = current;
26 }
27 return levelFound;
28 } // end of __getPredecessorsAndSuccessors

(a) Suppose that 6 is going to
be inserted. The search algorithm
gives a search path highlighted in
red. The starting/finishing points
of the red arrows are the prede-
cessors/successors of the new item.
Insert the new node in-between.

(b) Suppose that 6 is going to be
removed. Similarly, the search al-
gorithm returns a group of prede-
cessors (starting point of the red
arrows). Relink these predecessors’
successors to 6’s successors (the
finishing points of outgoing arrows
from 6).

Fig. 2: Insertion and Removal

4 Concurrent Skiplist-Based Priority Queue and
Implementation

We now turn our attention to skiplist’s concurrent implementation in Java. The
same trick from [3] is applied to skiplist, that is, the deleteMin operation is
done lazily with two steps: first label the target node, removing it logically,
and second, reconnect its predecessors’ next fields, removing it physically. Each
node contains two Boolean fields, logicallyDeleted and fullyConnected. The
former is to indicate that the node has been logically deleted and is ready to be
physically deleted. The latter is to notify that a node is being inserted but not

5

Fig. 3: Class Relationship in UML. The Java Implementations of
LazySkipListPriorityQueue is given in the Appendix.

6

yet well-connected, and therefore is not considered in the list. The node to which
head points is not necessarily smallest since it might not be fullyConnceted

or be marked as logicallyDeleted.

The algorithm is optimistic. Similar to [3], searching for the insertion spot or the
victim to be removed does not acquire locks. During insert and deleteMin, an
item is spliced in or out only when its predecessors are fully connected and not
logically deleted, and their successors remain unchanged; it retries otherwise.
Predecessors are retrieved by a top-down search. However, deleteMin scans the
bottom level from the list head. If duplicated priority is allowed, the former finds
the highest match. Contrarily, the latter stops as soon as it hits the first valid
match. They are not necessarily the same. Uniqueness is enforced by assigning
a creation time to each node upon its construction so as to avoid inconsistent
search.

The insert method, shown in Listing 3, initializes the predecessors and the
successor arrays before calling getPredecessorsAndSuccessors (Line 5-6).
getPredecessorsAndSuccessors determines the predecessors and the succes-

sors of a new node and put them into the said arrays respectively. These two
arrays are not reliable because they may not be accurate when the nodes are
accessed. The thread executing insert acquires locks in descending priority
(bottom-up) and validates each of the predecessors (Line 18-30). The valida-
tion at each level checks whether predecessor is still adjacent to sucessor and
neither is marked as logicallyDeleted. If validation fails, there must be some
contention introduced by other threads. The current thread releases the locks
it holds and simply retries. If the current thread manage to locks all the prede-
cessors, it splices in target between predecessors and successors (Line 35-38).
When all re-connections are done, the field fullyConnected of target is set to
true, which indicates that target is inserted in the queue (Line 41).

Listing 3: insert of LazyConcurrentSkipListPriorityQueue

1 /** {@inheritDoc} */
2 public boolean insert(K key , V value) {
3 int newHeight = __randomLevel ();
4 Node <K, V> target = new Node <K, V>(newHeight , key , value);
5 Node <K, V>[] predecessors = (Node <K, V>[]) new Node[MAX_LEVEL + 1];
6 Node <K, V>[] successors = (Node <K, V>[]) new Node[MAX_LEVEL + 1];
7

8 while (true) {
9 int levelFound = __getPredecessorsAndSuccessors(

10 target , predecessors , successors);
11 assert levelFound == -1;// Uniqueness is enforced by Node class.
12

13 // keep track of the lock height , so as to know where to unlock
14 int lockHeight = -1;
15

16 try {
17 boolean valid = true;
18 Node <K, V> predecessor , successor;
19 for (int i = 0; valid && i <= newHeight; i++) {
20 predecessor = predecessors[i];
21 successor = successors[i];
22 predecessor.__lock.lock ();
23 lockHeight = i;

7

24

25 // 1. If predecessor.__logicallyDeleted , predecessor
26 // is being removed.
27 // 2. If successor.__logicallyDeleted , successor is
28 // being removed.
29 // 3. If predecessor.__next[i] != successor , sth has
30 // been inserted in-between
31 // In either case , the predecessor or successor is invalid.
32 valid = !predecessor.__logicallyDeleted &&
33 !successor.__logicallyDeleted &&
34 predecessor.__next[i] == successor;
35 }
36 if (!valid) {
37 continue;
38 }
39

40 for (int i = 0; i <= newHeight; i++) {
41 target.__next[i] = successors[i];
42 predecessors[i]. __next[i] = target;
43 }
44

45 // linearization point , the node is considered "inserted ".
46 target.__fullyConnected = true;
47 return true;
48 } // end of try
49 finally {
50 for (int i = 0; i <= lockHeight; i++) {
51 predecessors[i]. __lock.unlock ();
52 }
53 } // end of finally
54 } // end of while (true)
55 } // end of insert

One can disallow deleteMin to remove a node whose creation time is earlier
than the function invocation if the FIFO (first in first out) convention of a queue
needs to be preserved. More formally, let dm be a deleteMin operation, Q be
the item set whose elements invoke insert before dm, D be the item set that
is removed by other deleteMin operations that precede or are concurrent with
dm, and I be the item set that is concurrently inserted during dm’s execution.
If timestamps are preserved, dm returns the minimum from Q−D; Q + I −D
otherwise.

The deleteMin method appears in Listing 4. At the beginning (Line 3), it records
the invocation time, nodes of creation time greater than which will not be con-
sidered. Similarly two arrays are initialized to retrieve the predecessors and the
successors (Line 5-6). deleteMin scans the bottom list to get the smallest item
(Lines 11-24). If current is ready to be deleted, deleteMin acquires lock, sets
the field logicallyDeleted to true (Line 14-20); otherwise current becomes the
predecessor of current (Line 22-23). Note that new arrivals may be inserted
before current, but their creation time cannot be earlier than deleteMin’s in-
vocation time. If tail is encountered, the queue is empty before the start of
deleteMin, though it might not be the case during the execution of deleteMin.
getPredecessorsAndSuccessors is called to retrieve target’s ostensible prede-

cessors and successors. In order to avoid deadlock, locks are acquired and released
in the same manner as insert (bottom-up, Line 38-44, 54-58). predecessor is ver-

8

ified as valid when it points to target and is not logically deleted (Line 42-43).
Once all levels are locked and valid, target is spliced out (Line 45-50).

A small modification is made in Listing 5 where time restriction on deleteMin
is not imposed. When scanning the bottom list, the while loop is broken by
timeInvoked in Line 13 Listing 4 but is not in Line 8 Listing 5. Another change
is in Line 17 Listing 5 where search is retried from the head of the list. We will
see in the experiment section that this impacts the throughput.

Listing 4: deleteMin of LazyConcurrentSkipListPriorityQueue

1 /** {@inheritDoc} */
2 public Node <K,V> __deleteMin () {
3 long timeInvoked = TIMER.get ();
4 int targetHeight = -1;
5 Node <K, V>[] predecessors = (Node <K, V>[]) new Node[MAX_LEVEL + 1];
6 Node <K, V>[] successors = (Node <K, V>[]) new Node[MAX_LEVEL + 1];
7 Node <K, V> predecessor , current , target = null;
8

9 predecessor = __head;
10 current = __head.__next [0];
11 while (current != __tail) {
12 if (current.__fullyConnected && !current.__logicallyDeleted
13 && current.__timeCreated > timeInvoked) {
14 current.__lock.lock ();
15 if (!current.__logicallyDeleted) {
16 current.__logicallyDeleted = false;
17 current.__lock.unlock ();
18 break;
19 }
20 current.__lock.unlock ();
21 }
22 predecessor = current;
23 current = predecessor.__next [0];
24 }
25

26 if (current != __tail) {
27 while (true) {
28 int levelFound =
29 __getPredecessorsAndSuccessors(
30 current , predecessors , successors);
31 target = successors[levelFound];
32 assert (levelFound != -1 && current == target);
33

34 target.__lock.lock ();
35 int lockHeight = -1;
36 try {
37 boolean valid = true;
38 for (int i = 0; valid && i <= targetHeight; i++) {
39 predecessor = predecessors[i];
40 predecessor.__lock.lock ();
41 lockHeight = i;
42 valid = !predecessor.__logicallyDeleted &&
43 predecessor.__next[i] == target;
44 }
45 if (!valid) {
46 continue;
47 }
48 for (int i = 0; i <= targetHeight; i++) {
49 predecessors[i]. __next[i] = target.__next[i];
50 }
51 target.__lock.unlock ();
52 return target;
53 }
54 finally {

9

55 for (int i = 0; i <= lockHeight; i++) {
56 predecessors[i]. __lock.unlock ();
57 }
58 }
59 } // end of while (true)
60 } // end of if (current != __tail)
61

62 return null;
63 } // end of deleteMin

Listing 5: deleteMin of LazyConcurrentSkipListPriorityQueue

1 /** {@inheritDoc} */
2 public Node <K,V> __deleteMin () {
3 // see listing 4
4 //
5 predecessor = __head;
6 current = __head.__next [0];
7 while (current != __tail) {
8 if (current.__fullyConnected && !current.__logicallyDeleted) {
9 current.__lock.lock ();

10 if (!current.__logicallyDeleted) {
11 current.__logicallyDeleted = false;
12 current.__lock.unlock ();
13 break;
14 }
15 else {
16 current.__lock.unlock ();
17 current = __head;
18 }
19 }
20 predecessor = current;
21 current = predecessor.__next [0];
22 }
23 //
24 // see listing 4
25 }

(a) Suppose that 6 is going to be inserted. Step 1: Identical to a
sequential skiplist, the search algorithm returns the predecessors and
the successors of the new node, which is indicated by the red arrows.
Step 2: From right to left, each predecessor, if valid (fully connected,
not logically deleted, and still pointing to the successor returned by
the search algorithm), is locked; otherwise, insertion unlocks these
predecessors and retries from Step 1.

10

(b) Step 3: Splice in the new node from right to left. As depicted here,
6 has been linked between 5 and 7 in Level 0, Level 1 and Level 2. 0
still points to 7. 6 is not fully connected, and thus is not considered
in the skiplist.

Fig. 4: Concurrent insert

(a) Suppose 0, 2 and 5 were inserted after deleteMin’s invocation
and 6 was inserted before deleteMin. Step 1: Scan the bottom list
from left to right until the first node inserted earlier than deleteMin’s
invocation and not logically deleted is found. In this example, 6 hasn’t
been logically deleted. remove sets it as logically deleted (red) and
locks it.

(b) Step 2: from right to left, each predecessor, if valid (not logically
deleted and still pointing to the successor returned by the search
algorithm), is locked; otherwise, deleteMin unlocks those predecessors
and retries from Step 1.

11

(c) Step 3: from right to left, link each predecessor to 6’s successor at
the same level. Unlock the predecessors when all done.

Fig. 5: Concurrent deleteMin

5 Experiment

5.1 Experiment Setup

The proposed algorithm is implemented as a class LazySkipListPriorityQueue
in the Java programming language. Its performance is evaluated by compar-
ing with a priority queue wrapping ConcurrentSkipListMap class from the
java.util.concurrent package1. In addition, we also provide a baseline imple-
mentation in which methods are synchronized to guarantee thread-safety and a
dummy priority queue whose methods are synchronized but without any actual
implementation. Since deleteMin introduces heavy contention on the head of a
list, we run the algorithms with insert-to-deleteMin ratio of 5:5, 7:3 and 9:1 in
the priority range from 0 up to 100, 1000 and 10000, and examine how deleteMin
affects performance. All experiments starts with empty data structures with pri-
orities selected from a uniform distribution. An operation is decided randomly
with bias according to the insert-to-deleteMin ratio. The experiments are con-
ducted in the Manycore Testing Lab (MTL)2. It is a remote system equipped
with 256GB memory and 4 CPUs of Intel® Xeon® E7-4860 @ 2.27GHz. In our
experiments, we constrained the CPU usage on the first 16 logical processing
units.3 and parallel executions up to 32 threads.

1 We also implemented and compared with heap-based priority queue credited to Hunt
et al. [5]. However, as concurrency rose, a single operation sometimes did not finish
within 1 second. It failed to provide a valuable reference. Moreover, it became slower
than a sequential heap when the thread number exceeded 3.

2 Intel Corporation has set up a special remote system that allows faculty and stu-
dents to work with computers with lots of cores, called the Manycore Testing Lab.
Users intentionally write programs that take advantage of multi-core parallelism and
explore the issues in parallelism and concurrency that arise.

3 Intel® Xeon® E7-4860 each has 10 cores and meanwhile supports hyper-threading.
The system therefore is of 80 logical processing units.

12

5.2 Results & Analysis

Provided that the monitor baseline and the lock-free wrapper do not take into
account the temporal relationship between insert and deleteMin, we would like
to investigate the throughput with and without the timestamps assigned to an
item and the invocation of deleteMin to ensure fairness. Results are shown
in Figure 2-4. Graphs in the right columns depict the throughput of various
algorithms and the left columns detail the number for retrying and the ratio of
the accumulative numbers of nodes scanned at the bottom list by deleteMin to
the number of deleteMin. The following conclusions have been reached4:

– The deleteMin operation brings in a great deal of contention. As the ratio
of insert grows, contention is alleviated and thus the throughput increases.
It conforms to our expectation that deleteMin is centralized around the list
head while insert is well distributed.

– Overhead is primarily in the form of locking. Retrying, though important to
ensure correct concurrency, is a rare case which introduces little overhead.
As we can see in the left columns, retrying is outnumbered several thousands
to one by operation count.

– Priority range does not give rise to contention, because uniqueness is enforced
on the Node class by an atomic counter. Experiments are divided into three
groups in the right columns. They behave similarly in all three different ratio
settings.

– If deleteMin is not allowed to remove items whose creation time is earlier
than the invocation of deleteMin, deleteMin scans a significantly longer
path possibly leading to the tail of the list. At a high concurrent level,
context switch is likely to take place right after deleteMin’s invocation and
many new arrivals jump the queue. However, these new arrivals are close
to the head, thus does not result in a lengthy search path. It explains why
LazySkipListPriority with timestamps is of lower throughput.

– LazySkipListPriorityQueue yields comparable but more predictable result
to that of the lock-free wrapper. There is no obvious winner when deleteMin
dominates (5:5 ratio). Both lock-free and lock-based implementation are close
to monitor in such situation.

6 Conclusion

This paper explores a friendly implementation of concurrent priority queue.
search, insert and remove of concurrent skiplist, in common usage, spread all

4 The fluctuation of the lock-free wrapper is so far not explainable. It might be a
hardware problem. A reasonable guess of monitor’s performance gain is that the
optimizer moves some local statements out of the synchronized block.

13

Fig. 6: Throughput within 1 second in a range of 100 and the corresponding
number of retrying and the number of nodes scanned by deleteMin in the
bottom list

14

Fig. 7: Throughput within 1 second in a range of 1000 and the corresponding
number of retrying and the number of nodes scanned by deleteMin in the
bottom list

15

Fig. 8: Throughput within 1 second in a range of 10000 and the corresponding
number of retrying and the number of nodes scanned by deleteMin in the
bottom list

16

along the list. Therefore they gain performance as a matter of course. In con-
trast, a skiplist-based priority queue centralizes its removal on the very first item,
which is heavily contentious. If deleteMin is not allowed to remove items whose
creation time is earlier than the invocation of deleteMin, deleteMin scans a
seriously longer path. Time is spent on an actual traversal instead of concurrent
overhead. Both implementations do not benefit much from multi-threads when
insert and deleteMin are equally mixed.

Acknowledgement

We thank the team at Intel’s Multicore Testing Lab for providing us access to
their machine.

References

1. Clark Allan Crane, Linear lists and priority queues as balanced binary trees, (1972).
2. Michael L Fredman and Robert Endre Tarjan, Fibonacci heaps and their uses in

improved network optimization algorithms, Journal of the ACM (JACM) 34 (1987),
no. 3, 596–615.

3. Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N
Scherer III, and Nir Shavit, A lazy concurrent list-based set algorithm, Principles
of Distributed Systems, Springer, 2006, pp. 3–16.

4. Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit, A simple opti-
mistic skiplist algorithm, Structural Information and Communication Complexity,
Springer, 2007, pp. 124–138.

5. Galen C Hunt, Maged M Michael, Srinivasan Parthasarathy, and Michael L Scott,
An efficient algorithm for concurrent priority queue heaps, Information Processing
Letters 60 (1996), no. 3, 151–157.

6. William Pugh, Skip lists: a probabilistic alternative to balanced trees, Communica-
tions of the ACM 33 (1990), no. 6, 668–676.

7. , Concurrent maintenance of skip lists, (1998).
8. Nir Shavit and Itay Lotan, Skiplist-based concurrent priority queues, Parallel and

Distributed Processing Symposium, IEEE, 2000, pp. 263–268.
9. Nir Shavit and Asaph Zemach, Diffracting trees, ACM Transactions on Computer

Systems (TOCS) 14 (1996), no. 4, 385–428.
10. Daniel Dominic Sleator and Robert Endre Tarjan, Self-adjusting heaps, SIAM Jour-

nal on Computing 15 (1986), no. 1, 52–69.
11. Jean Vuillemin, A data structure for manipulating priority queues, Communica-

tions of the ACM 21 (1978), no. 4, 309–315.

17

A Java Implementation of Data Structure Discussed

Listing 6: LazyConcurrentSkipListPriorityQueue

1 import java.io.*;
2 import java.util.concurrent.locks .*;
3 import java.util.concurrent.atomic .*;
4 import java.util .*;
5

6 /**
7 * A class which implements PriorityQueue interface and whose underlying
8 * data structure is SkipList. This implementation allows duplicated
9 * priority.

10 * @param <K> The type of priority that is associated to an item.
11 * @param <V> The type of item stored in the priority queue.
12 * */
13 public class LazySkipListPriorityQueue <K extends Comparable <K>, V>
14 implements PriorityQueue <K, V> {
15

16 /*
17 * Each node is associated with a timestamp. The reason is as follow:
18 * In the first stage of deleteMin (), it begins traversal at the
19 * bottom; therefore it finds the very FIRST match. In the second
20 * stage of deleteMin(), it starts traversal at the top; therefore it
21 * finds the HIGHEST match , which is NOT necessary. the first match.
22 * By adding a sorted timestamp , uniqueness is enforced , i.e., the
23 * underlying data structure has no duplicate.
24 * hashCode () though enforces uniqueness , sort order is not guaranteed.
25 * */
26 final private static class Node <K, V> implements Comparable <Node <K, V>> {
27

28 final private K __key; // the client -provided priority
29 final private V __value;
30 final private int __level; // the height of the node
31 final private Node <K,V>[] __next;
32 final private Lock __lock;
33

34 // if true , the node is not considered existed
35 // false by default; once changed to true by deleteMin ,
36 // it cannot become false again
37 volatile private boolean __logiciallyDeleted;
38

39 // if true , the node is considered in the list
40 // false by default , once changed to true by insert ,
41 // it cannot become false again
42 volatile private boolean __fullyConnected;
43

44 // linearized point at which method "takes effect"
45 final private long __timeCreated; // also serves as a unique id
46

47 @SuppressWarnings("unchecked")
48 /**
49 * Create a node whose height is level , priority is key and item
50 * stored is value
51 * @param level Height of the node.
52 * @param key Priority.
53 * @param value Item to be stored.
54 * */
55 public Node(int level , K key , V value) {
56 __level = level;
57 __key = key;
58 __value = value;
59 __timeCreated = TIMER.getAndIncrement ();
60 __logiciallyDeleted = false;
61 __next = (Node <K, V>[]) new Node[level + 1];
62 __lock = new ReentrantLock ();

18

63 __fullyConnected = false;
64 } // end of Node
65

66

67 @Override
68 /** {@inheritDoc} */
69 public int compareTo(Node <K, V> o) {
70 // only the keys of __head and __tail are null
71 // only __tail could be passed to this function
72 // __tail is a sentinel node which is always the largest
73 if (o.__key == null) {
74 return -1;
75 }
76

77 @SuppressWarnings("unchecked")
78 int result = ((Comparable <K>)__key). compareTo(o.__key);
79 if (result == 0){
80 if (__timeCreated < o.__timeCreated) {
81 return -1;
82 }
83 else if (__timeCreated > o.__timeCreated) {
84 return 1;
85 }
86 else {
87 return 0;
88 } // end of if (__timeCreated)
89 }
90 else {
91 return result;
92 } // end of if (result)
93 } // end of compareTo
94 } // end of class Node
95

96

97

98 // The list is sorted by a combination of (key , timeinserted).
99 final private static int MAX_LEVEL = 32;

100 final private static AtomicInteger TIMER = new AtomicInteger ();
101

102 // 2 sentinel nodes. __head is "smallest ". __tail is "largest ".
103 final private Node <K, V> __head;
104 final private Node <K, V> __tail;
105

106

107 /**
108 * Default Constructor which creates an empty concurrent priority
109 * queue.
110 * */
111 public LazySkipListPriorityQueue () {
112 __head = new Node <K, V>(MAX_LEVEL , null , null);
113 __tail = new Node <K, V>(MAX_LEVEL , null , null);
114 for (int i = 0; i < __head.__next.length; i++) {
115 __head.__next[i] = __tail;
116 }
117 } // end of LazySkipList
118

119

120 /**
121 * Generates a random integer between 0 and 32, inclusive. The
122 * probability that i is returned is 0.5^i if i is not 32 and
123 * 0.5^31 if i is 32.
124 * @return A random integer.
125 * */
126 private static int __randomLevel () {
127 int height = 0;
128 while (height < MAX_LEVEL && Utility.randomBoolean ()) {
129 height ++;
130 }

19

131 return height;
132 } // end of randomHeight
133

134

135 /** Please look at Listing 2 */
136 private int __getPredecessorsAndSuccessors (Node <K, V> target ,
137 Node <K, V>[] predecessors , Node <K, V>[] successors) {
138 // please look at Listing 2
139 } // end of __getPredecessorsAndSuccessors
140

141

142 @SuppressWarnings("unchecked")
143 @Override
144 /** {@inheritDoc} */
145 public boolean insert(K key , V value) {
146 // Please look at Listing 3
147 } // end of insert
148

149

150 @SuppressWarnings("unchecked")
151 @Override
152 /** {@inheritDoc} */
153 public V deleteMin () {
154 // Please look at Listing 4
155 } // end of deleteMin
156

157

158

159 /**
160 * Return the string representation of the current object. This
161 * method is written for test purpose and is NOT thread -safe.
162 * @return The string representation of the current object , of
163 * which is a sorted sequence. */
164 public String toString () {
165 StringBuffer sb = new StringBuffer ();
166 sb.append("[");
167 for (Node <K, V> current = __head.__next [0];
168 current != __tail; current = current.__next [0]) {
169 sb.append(’(’). append(current.__key). append(", ")
170 .append(current.__timeCreated). append(", ")
171 .append(current.__value). append(") ");
172 }
173 sb.append(’]’);
174 return sb.toString ();
175 } // end of toString ()
176

177

178

179 public boolean isValid () {
180 TreeSet <K> prevLevel = new TreeSet <K>();
181 TreeSet <K> curLevel = null;
182

183 for (int i = 0; i <= MAX_LEVEL; i++) {
184 curLevel = new TreeSet <K>();
185 Node <K, V> prev = __head;
186 Node <K, V> cur = __head.__next[i];
187 boolean result = true;
188

189 while (cur != __tail) {
190 if (!cur.__fullyConnected || cur.__logiciallyDeleted) {
191 System.err.println(
192 i + " Fail because of invalid boolean flags ...");
193 result = false;
194 }
195 if (prev != __head && prev.compareTo(cur) >= 0) {
196 System.err.println(
197 i + " Fail because of sort order ...");
198 result = false;

20

199 }
200 if (!result) {
201 // this piece of code sees how sort order is violated
202 // the console has only limited buffer. in order to
203 // observe the result , we have to write it to a file
204 File file = new File("./ logging");
205 BufferedWriter bw = null;
206 try {
207 if (!file.exists ()) {
208 file.createNewFile ();
209 }
210 bw = new BufferedWriter(
211 new FileWriter(file.getAbsoluteFile ()));
212

213 Node <K, V> previous = __head;
214 Node <K, V> current = __head.__next[i];
215 while (current != __tail) {
216 bw.write(current.__key + " " +
217 current.__timeCreated + "\n");
218 if (previous != __head &&
219 previous.compareTo(current) >= 0) {
220 System.err.println("violate skiplist property");
221 bw.write("violate skiplist property\n");
222 }
223 previous = current;
224 current = current.__next[i];
225 }
226 bw.close ();
227 System.exit (1);
228 }
229 catch (IOException e) {
230 // let it throw ...
231 }
232 return false;
233 } // end of if (!result)
234

235 curLevel.add(cur.__key);
236 prev = cur;
237 cur = cur.__next[i];
238 } // end of while (cur != __tail)
239

240 if (i > 0) {
241 // check if higher level is subset of the lower level
242 if (!prevLevel.containsAll(curLevel)) {
243 System.err.println(i + " Fail because of xxoo");
244 return false;
245 }
246 }
247 prevLevel = curLevel;
248 } // end of for
249 return true;
250 } // end of isValid
251

252 } // end of LazySkipListPriorityQueue

