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Abstract

The geometrical calibration of a high-definition camera
rig is an important step for 3D film making and comput-
er vision applications. Due to the large amount of image
data in high-definition, 2k and 4k images, maintaining ex-
ecution speeds appropriate for on-set, on-line adjustment
procedures is one of the biggest challenges for machine vi-
sion based calibration methods. Our aims are to provide a
low-cost, fast and accurate system to calibrate both the in-
trinsic and extrinsic parameters of a stereo camera rig. We
first propose a novel calibration target that we call marker
chessboard to speed up the corner detection. Then we devel-
op an automatic key frame selection algorithm to optimize
frames used in calibration. We also propose a bundle ad-
justment method to overcome the geometrical inaccuracy of
the chessboard. Finally we introduce an online stereo cam-
era calibration system based on the above improvements.

1. Introduction
In 3D film making, one of the main problems is stere-

o camera calibration which aims to match the two camera
images in their optical characteristics and to align them op-
tomechanically. Typically this includes compensating for
differences in focal length, distortion, position and orienta-
tion leaving the separation of the cameras that produces the
intended stereo baseline (and possibly their convergence)
as the only difference between the camera pair. Calibration
and alignment are critical since only tenths of millimeters
of difference in a camera setting can cause many pixels dis-
placement on the screen. Spurious disparities due to mis-
alignment can degrade fusion[19], stereoscopic depth per-
ception [11], and comfort [16, 15] leading to a poor stereo-
scopic experience for the viewer.

On set camera calibration needs to be performed effec-
tively and efficiently to avoid costly delays in production.
Though there are many commercial systems available for
stereo calibration, they may be too expensive for indepen-

Figure 1: Marker Chessboard.

dent film-makers. For instance the SIP Stereo Image Pro-
cessor (3ality Technica, Burbank CA) uses hardware image
processing and closed loop camera motor control to esti-
mate and automatically adjust stereo rig alignment. Such
a system is far beyond the budget of independent and mod-
est budget productions, which rely on manual adjustment of
the rig parameters to achieve alignment. Recently, systems
such as the Stereo3D CAT (Dashwood Cinema Solutions,
Toronto Canada)[1] have been introduced to aid the manual
alignment of stereo rigs on set with accurate localization of
markers in a test chart. Currently rig alignment on a film
production set still relies on either expensive custom hard-
ware or highly experienced operators to align the cameras
aided by custom alignment charts and tools.

On the other hand, camera calibration is a mathemati-
cally well-defined problem in machine vision. Researchers
first use 3D or 2D objects to estimate intrinsic parameters
of the camera [22, 13, 23]. The camera intrinsic parame-
ters describe the optical properties of the camera such as
the focal length and lens distortion. They then obtain ex-
trinsic parameters of the stereo camera rig [12, 18] which
describe the relative orientation and position of each camer-
a in the rig relative to a base frame (typically corresponding
either one of the cameras or to a frame of reference fixed to
the scene). This is accomplished by analyzing and apply-

1



ing geometrical constraints to stereoscopic images or image
sequences. The process is usually facilitated by imaging a
target with known geometry, such as a chessboard.

These techniques potentially provide an affordable so-
lution to professional camera calibration. In this paper we
describe adaption and extension of computer vision algo-
rithms for camera calibration to the alignment of a stereo-
scopic film camera rig. Our goals for the system are as fol-
lows. First, it should be affordable to independent 3D film
makers both in hardware and software. Second, it should
provide competitive accuracy with commercial systems and
machine vision standards. To achieve this purpose, we take
a plane-based method [23] to estimate the intrinsic parame-
ters because of its simplicity and competitiveness of accura-
cy [21]. Then, we capture images of a chessboard from left
and right cameras synchronously. By estimating the rela-
tive pose of the camera rig, we can adjust the stereo rig at
an interactive speed.

However, there are several challenges to applying a ma-
chine vision technique to film-making. The first challenge
comes from high image resolution. Manual alignment of a
rig on set requires interactive execution speeds to allow for
adjustments while monitoring responses. Furthermore the
camera chosen to mount on the rig, lens selection or zoom,
interaxial distance, and other parameters change frequent-
ly from shot to shot eliminating the possibility of ‘lock-
ing down’ the rig after a single time consuming calibra-
tion. Current software implementations of standard tech-
niques are much too slow. Specifically, the corner detection
processing in the most popular technique [4] is very slow.
Second, the film production crew must do the selection of
suitable image frames for the calibration process on set. A
skilled cinematographer, camera operator or stereographer
can be assumed but familiarity with computer vision tech-
niques can not. This is further complicated by the fact that
some cameras can only record video instead of an image.
Manually selecting key frames is time consuming and may
be inaccurate. Finally, a wide variety of lighting condition-
s, focal lengths, camera distances and environments must
be accommodated due to the large variety of scenes in even
a single film production. This removes the possibility of
relying on a highly precise single calibration object. Pla-
nar chessboards are relatively easy to construct and modify
making them an attractive and flexible solution. However
a chessboard printed and mounted on a flat substrate using
economical techniques available on set may not be geomet-
rically accurate. To overcome these difficulties, we propose
three improvements which are introduced in section 4.

To summarize, the contribution of our paper are as fol-
lows:

• A novel design called the marker chessboard that
greatly speeds up corner detection

• An automatic key frame selection algorithm that liber-
ates people from repetitive and time consuming work
and the requirement to select frames suitable for ma-
chine vision analysis.

• An easily implemented semi-automated bundle adjust-
ment method to improve the accuracy of intrinsic cali-
bration.

• An low-cost online stereo camera calibration system.

2. Related work

There are two steps to recover the relative pose of a stere-
o camera in Euclidean space. The first step is to compute
the camera matrix and distortion parameters usually by an-
alyzing images of a target with known geometry. These pa-
rameters are called the intrinsic parameters since they are
relatively stable for a given camera. In a film production
context these are often fixed (with the exception of focus)
for a given camera-lens pair for a group of shots or often
even for an entire production (with a variety of cameras
or rigs used across shots). The second step is to compute
the rotation matrix and translation vector between two cam-
eras. These parameters are called extrinsic parameters s-
ince they are changed by the relative pose of cameras. In
a film production scenario the extrinsic parameters of a rig
vary from shot to shot or occasionally within a shot as cin-
ematographers vary the interaxial distance and convergence
to achieve the desired stereoscopic effects. Thus monitor-
ing and alignment of the extrinsic parameters is a frequent
and routine requirement. It is worth noting that, embedded
in the estimation of the camera intrinsic parameters, anoth-
er set extrinsic parameters is involved, but it describes the
relative pose between the target and its original (canonical)
pose rather than the relationship between two cameras.

For intrinsic calibration, choice of calibration target,
camera model, and optimization method are three of the
most important factors impacting accuracy. For the cali-
bration target, we chose a planar chessboard for its simplic-
ity of manufacture and maintenance. Such a target could
even be manufactured on set using standard office printing
equipment and flat stock materials typically available on set,
allowing for flexibility to address unforeseen issues with s-
cale, access, illumination or other factors. Another advan-
tage is that a significant number of research papers have
considered this configuration and have led to impressive ac-
curacy improvements for algorithm based on the planar tar-
get. For example, Datta et al. [8] proposed an iterative re-
finement algorithm to increase the accuracy of control point
localization and calibration results. Albarelli et al. [2] pro-
posed a bundle adjustment based algorithm and obtained a
very accurate result. For the camera model, we chose three
radial and two tangential distortion coefficients proposed by
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Brown [6]. Such a model is applicable to most film camera-
lens combinations and in our experiments, they have shown
to be accurate enough for stereo rig calibration. For the op-
timization method, we use the implementation of [23] in
Open CV [5] for its free availability and efficiency.

For extrinsic calibration, there are also many algorithms
available in the computer vision literature. The eight point
[12] and five point [18] algorithms are the two standard ones
and can be performed with the given number of stereo cor-
respondences in a general scene. However, it is not possi-
ble to recover the camera position displacement from a giv-
en fundamental matrix based on the eight points algorithm.
Also, image noise will influence the accuracy of the five
point algorithm in practice. Our method obtains the relative
pose from planar target with known geometry (specifical-
ly a chessboard pattern) as we do in the intrinsic calibra-
tion. Camera crew are used to relying on calibration charts
for colour, geometry and lighting control and thus this will
be a standard procedure for them. We first get the relative
pose between each camera and the target, then we obtain
the relative pose of cameras by rotating and translating the
right camera to the left camera’s coordinate frame. In this
method, we can take advantage of known correspondence
between many features in the target (corners in the chess-
board) and reduce the influence of noise.

3. System overview

Our system has two parts. The first part computes in-
trinsic parameters for different lenses. Typically on a film
set, focal length is controlled by using a set of high-quality
fixed focal length ‘prime’ lenses but occasionally, particu-
larly on low budget productions, a zoom lens may be used.
For our testing this was convenient and we calculated in-
trinsic parameters for a range of different zoom levels. At
a specified zoom level, we first record a video in which an
operator intermittently changes the position and orientation
of the chessboard target. Then our system automatically se-
lects key frames from the video to estimate the intrinsic pa-
rameters. The second part computes extrinsic parameter of
a stereo camera rig. We mounted the stereo camera pair in a
mirror rig. The left camera and right camera capture frames
from the target synchronously. Based on the known intrinsic
parameters and the estimation of stereo correspondences in
the captured frames, our system provides the relative pose
of the cameras at an interactive rate.

The rest of paper is organized as follows. Section 4 de-
scribes three improvements for calibrating intrinsic param-
eters from a video. Section 5 reports performance of the
extrinsic calibration system. Finally, we draw conclusions
and discussion in section 6.

4. Intrinsic calibration

4.1. Marker chessboard

The chessboard pattern is widely used in calibration and
its corner positions can be detected automatically in Open
CV. The corner detection algorithm works in two steps. The
first step is to obtain the initial corner positions. The algo-
rithm finds all squares as connected components, then fits a
polygon to each connected component. If a resulting poly-
gon has four vertices, it is a qualified square. Then the al-
gorithm orders qualified squares into a grid until the pattern
is found. The second step is to refine the resulting corner
position to sub-pixel localization. However, there are two
problems with this algorithm. First, the speed decreases
rapidly with increase in image resolution. For a 1920 ×
1080 image, it takes about 200 ms per frame. Second, pro-
cessing speed degrades when image quality is poor and the
algorithm spends a lot of time determining corner positions
in blurred images, which are useless for camera calibration.
Most of the corner detection time is due to the first step.
If we can replace it with a low time-cost method, we can
greatly speed up the corner detection processing.

Our marker chessboard is inspired by the manual corner
detection method in the camera calibration toolbox [4]. In
their method, the user needs to select four corner positions
that are located in the outermost level of the chessboard with
mouse clicks. Then it computes a homography matrix from
the corresponding physical corners to these four corners,
and uses the homography matrix to obtain the rough po-
sition of the remaining corners within the chessboard. If we
can detect four special corners in the chessboard automati-
cally, this manual method can be automated. This was our
motivation for adding four markers to the traditional chess-
board. Figure 1 shows our new chessboard which we refer
to as the marker chessboard. Both markers and chessboard
have been used in corner detection for camera calibration
[9]. The combination of these techniques have not, to our
knowledge, been proposed in previous research.

Compared with the traditional “black” and “white”
chessboard, the marker chessboard has four easily identi-
fiable markers in the four corners. Each marker is made a
little bit larger than the square of the chessboard for easy de-
tection (edge length ratio between them is 2:1.5). Without
loss of generality, for a chessboard with a size of w′ × h′

(w′ and h′ are the number of inside corners along the chess-
board width and height, respectively, with w′ ≥ h′), we set
origin at the top-left inside corner and set the small square
edge length as the unit length. Relative to this coordinate
frame, then the marker centers are placed at the coordi-
nate of (−1,−1), (w′,−1), (w′, h′), (−1, h′) respectively
and their edges aligned to be parallel with the chessboard
square edges. We denote the marker centers and inside cor-
ner as pm and pc in the physical board, and p′m and p′c in
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the image and express them in homogeneous coordinates.
For an image with little distortion, they are mapped by a
homography matrix H in the perspective transformation:
p′m = Hpm and p′c = Hpc respectively. The algorithm
of marker chessboard detection is as follows:

1. Detect or track four marker centers in the image. If
less than four markers are found, stop detection imme-
diately.

2. Compute the homography matrix H from physical
marker centers pm to image marker centers p′m.

3. Compute the rough position of corners by p′c = Hpc.

4. Refine the corners p′c with sub-pixel accuracy.

We choose the marker detection method in ArUco [20]
for its unambiguous marker coding. One modification
of their marker detection method is that we use adaptive
thresholding of the perimeters of potential markers. Since
the whole chessboard should be shot in the image, the max-
imal edge length of marker is lm = max(w/w′, h/h′),
where w and h are the width and height of image with
w ≥ h. We heuristically set the maximum perimeter of
a candidate marker as 6× lm, and also set the minimum
threshold of it as lm to filter short edges in the image. More-
over, a marker position should have small displacement in
consecutive frames, therefore the algorithm can track the
markers in a small region of interest in the image (search-
ing 10 pixels beyond the bounding box of the marker cor-
ners works in practice) which improves detection speed.

Figure 2 shows a speed comparison between the tradi-
tional chessboard using Open CV method and the mark-
er chessboard using our method. The test video has 180
frames during which the chessboard is changed from one
pose to another. As we can see, the marker chessboard
with the new corner detection technique can greatly speed
up corner detection without losing accuracy. Figure 2(b)
shows a detailed comparison over the first 24 frames. Our
method is so fast that the execution time is only a few ms in
some frames when marker tracking is near perfect (little or
no motion between frames). Even without marker tracking,
our method takes only about 30ms per frame (see the first
frame in the Figure 2(b)). In contrast, the Open CV method
takes about 200ms per frame.

Table 1 shows the average time cost for detected, un-
detected and all frames for the same video. Detected frames
are frames where the corners could be extracted from the
frame, un-detected where the frame was discarded from fur-
ther analysis and the ‘all’ conditions considers both detected
and undetected frames. Our method speeds up the corner
detection process by more than 10 times. The number of
detected frames is smaller than the Open CV method since
our method automatically discards the blurred images in the
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Figure 2: Corner detection speed for a 180 frame calibration
sequence.

Frame Statistic Open CV Our method
Detected number 151 128
Avg detected (ms) 213 15

Avg un-detected (ms) 1146 22
Avg all (ms) 363 17

Table 1: Statistics of corner detection.

process of marker detection. On the contrary, the Open CV
method spends a lot of execution time processing blurred
images which provide little useful data but require signifi-
cant computational effort (see the peaks of execution time
for the chessboard curve between frames 80 and 120 in fig-
ure 2(a)).
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4.2. Key frame selection

Some digital cinema and digital video cameras can on-
ly record a video instead of capturing a single image. So
people need to manually select key frames that are used in
calibration. It is a tedious and time-consuming job. For ex-
ample, for a 4-minutes video, it usually takes more than 5
minutes for a well-trained operator to select the key frames.
Since the selected frames may suffer from blur, have similar
orientation or miss some particular orientations, they often
need to repeat the process several times.

As suggested by [23] and our experiments, the key
frames should be blur-free and have a sufficiently broad
range of target orientation to allow for robust calibration.
We developed an automatic key frame selection method to
achieve these two demands. It first selects an initial key
frame set by dividing the video into sub-sequences, then re-
fines the set by analyzing and checking each frame. The
algorithm is as follows:

1. Detect the corners in each frame and mark blur free
frames (and their corners) as candidate frames.

2. Divide the whole frame sequence into sub-sequences
so that in each sub-sequence the corner displacement
of consecutive frames is smaller than a threshold θa.

3. Randomly select one frame from each sub-sequence as
initial key frames.

4. Calibrate the camera from the key frames.

5. Compute the unit normal of the target plane for each
key frame in world coordinates, and build a kd-tree
with these unit normals.

6. For each candidate frame, compute the target plane u-
nit normal, and find its nearest neighbor distance in the
kd-tree. If the distance is larger than a threshold θb, ad-
d it to key frame and rebuild kd-tree.

7. Find the nearest neighbor of each key frame in the
kd-tee (exclude itself). If its distance is less than the
threshold θb, discard the one with larger blur.

8. Rebuild kd-tree with new key frames. If there is new
frame added or discarded, go to 4. Otherwise finish the
selection.

In the candidate frame selection, we measure the mo-
tion blur using the corner displacement between the current
frame and the preceding and subsequent frame. If the corner
displacement is less than certain threshold (we set it empir-
ically as 0.5 pixels), the frame is regarded as a motion blur
free candidate frame. Only these candidate frames are used
in key frame selection.
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Figure 3: Key frame orientations.

The algorithm divides the whole frame sequence into
sub-sequence based on an observation: when the chess-
board is changed from one pose to next pose, the corner
position has a large displacement. So a displacement jump
(θa) indicates that the chessboard may have been placed in
a different pose in the subsequent frames. In our implemen-
tation, we set θa equals to 0.02 of image width.

We randomly select one frame from each sub-sequence
as initial key frames for two reasons: first, there is, by con-
struction, only a small corner displacement within a sub-
sequence; second, every frame is guaranteed to be blur-free
by step 1.

We use the unit normal of the chessboard plane to de-
scribe the chessboard pose. Given a (roughly) calibrated
camera in step 4, we compute the unit normal from 3D-
2D correspondences for each frame. The unit normals are
distributed over a unit sphere and their relative distance
is defined as the geodesic distance in the sphere. We use
the computationally more expedient calculation of the Eu-
clidean distance to query the nearest neighbor in the kd-tree
[3] since the Euclidean distance is approximately equal to
the geodesic distance when two normals are close enough.
We use the kd-tree based ANN (approximate nearest neigh-
bor) searching method instead of a general cluster method
such as mean shift [7] since the former method approxi-
mately provides the key frames without computing the ac-
curate cluster centers.

We check each candidate frame to make sure no key
frame is missing. This process may add frames to the kd-
tree. Also since a large displacement in the image plane
does not guarantee a large orientation difference in 3D s-
pace, e.g. two parallel frames could differ depth or location,
we re-check the key frame with its nearest neighbor in the
kd-tree. This process may discard key frames. Since ev-
ery new selected key frame resulting from this process has
a distance larger than the θb from its neighbours, and every
discarded frame increases the minimum distance between
the remaining key frames in the tree, the whole process con-
verges rapidly. In our experiment, it usually takes 2-3 itera-
tions. The threshold θb depends on the field of view of the
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(a) before
 

(b) after

Figure 4: Re-projection error before and after bundle ad-
justment (magnified by a factor of 40).

Item Open CV Our method
Corner detection (min) 35 3

Key frame selection (sec) N/A 21
Calibration (sec) 4.3 16.7

Re-projection error 0.35 0.22

Table 2: Calibrate intrinsic parameters from a 4-minute
video.

camera. We set it as 0.08 in the experiment.
Figure 3 shows 30 key frames obtained by our algorith-

m. As we can see, all of them have a different orientation.
They are automatically selected from 2621 frames with 634
candidate frames.

4.3. Bundle adjustment

We compute the intrinsic parameters from key frames.
The accuracy of intrinsic calibration relies on many factors.
In the experiment, we find that inaccuracy in the construc-
tion of the chessboard has a large impact on our system. Un-
fortunately, a highly accurate 2D chessboard requires very
expensive material and needs a remarkable amount of effort
for maintenance. This level of precision would now allow
for on set fabrication if necessary. To overcome this prob-
lem, we developed a bundle adjustment method.

s

 x
y
1

 = R

 X
Y
Z

+ T (1)

In equation 1, [x, y, 1] is an undistorted corner position
in camera coordinates and [X,Y, Z] is the corresponding
corner position in the chessboard. In a calibrated camera,
we assume intrinsic parameters and target pose to be cor-
rect. Then we can produce a more accurate description of
the chessboard corners in 3D space, [X,Y, Z], by using e-
quation 1 and a least square optimization procedure. Finally
we re-calibrate the camera using the refined chessboard ge-
ometry.

Our method is inspired by [2], however there are two d-
ifferences between our implementation and theirs. First, we
drop the assumption that all corners lay in a plane which
does not hold in our case (allowing for manufacturing toler-
ances effecting the z direction such as rippling of the printed
material or variation in adhesion to the substrate). Second,
we assume the extrinsic parameters R and T are accurate
enough to be used in the bundle adjustment to simplify the
optimization process. In the implementation, we only do
one iteration of the bundle adjustment since we found that
the changes of re-projection error and the intrinsic parame-
ters are very small after the first iteration.

Figure 4 shows the re-projection error distribution be-
fore (0.35 pixels) and after (0.22 pixels) bundle adjustment.
Considering the image resolution, this error is acceptable
for the system in its current stage.

4.4. Intrinsic parameter estimation performance

Table 2 shows an example of the result of the entire
process of calibrating intrinsic parameters from a 4-minute
video. Comparing with 35 minutes of Open CV method,
our corner detection method only requires 3 minutes. Also
the key frame selection algorithm automatically selects 30
key frames from the video and the bundle adjustment pro-
vides more accurate intrinsic parameters with only a small
increment in processing time.

5. Extrinsic calibration
Figure 5 gives us an overview of the system and table 3

lists the equipment used. The marker chessboard was made
by printing out the marker chessboard pattern on an A4
sheet of paper and stuck to a flat board. Two Canon XF105
cameras were synchronized by an AJA Gen10 sync gener-
ator. The software processes synchronous images from the
cameras obtained through the capture card.

Our software is based on Open CV which provides effi-
cient fundamental image processing and camera calibration
algorithms. The software frame rate is about 1 fps. For ev-
ery processed frame, it first detects the markers and their in-
side corner positions in both the left and right images. Then
it provides two kinds of feedback to the camera operator to
indicate the stereo camera position and orientation.

The first kind of feedback is image-based measurement
which is based on the relative location of the four mark-
er centers in each image. The four marker centers form
a rectangle on the target plane and a quadrilateral in the
left and right image respectively. The algorithm provides
zoom level ratio by comparing the perimeters of these t-
wo quadrilaterals. Also it provides vertical and horizontal
offset by averaging the offset of marker center positions in
the horizontal and vertical direction respectively. The ro-
tation is obtained by comparing the angles formed by each
quadrilateral’s diagonal and horizontal line. The advantage
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Online software

Marker chessboard

Stereo camera rig

Figure 5: System over view: the arrows indicate the data
flow.

Item Equipment
Calibration target Marker chessboard

Stereo camera Two Canon XF105
Sync Generator AJA Gen10
Capture Card Black Magic Extreme 3D+

Computer Duo Core 2.4GHz, 2.0 GB memory

Table 3: Extrinsic calibration test bed.

of the image based measurement is its simplicity and stabil-
ity. However, it is not possible to differentiate between the
effects of horizontal offset and convergence angle directly.
Operators need to place the chessboard at different places
to adjust these parameters. Similar to other stereo align-
ment systems such as [14], the software provides an image
difference to quickly reveal coarse misalignments such as a
vertical offset.

The second kind of feedback is a 3D-based measurement
which is based on the inside corner positions of each square
within the calibration grid (14× 10) as well as the intrin-
sic parameters of the left and right cameras. We use these
points to estimate the relative pose or the rotation matrix
between the two cameras. Then we compute convergence,
tilt, and roll angle from the rotation matrix. These three an-
gles provide additional information of relative pose of two
cameras, especially the convergence and tilt angles (the roll
angle can be roughly estimated by rotation in the image-
based measurement). In the experiment, we can adjust the
tilt and roll angle to less than about 0.2 degree. Howev-
er, we found that the convergence angle estimated is noisier
and the error can vary between about -1.0 degree to 1.0 de-

Figure 6: An anaglyph image after camera alignment, best
viewed with with Red (left)/Cyan (right) glasses.

Figure 7: SIFT feature matchings indicate vertical offset
that is less that one pixel.

gree. Our analysis is that, although 5 or 8 points can provide
minimal solution for relative camera pose, relying on more
points or multiple chessboard orientations may provide a
more accurate result since the corner detection suffers from
noise. The main contributions of this paper are to intrinsic
camera calibration for stereo rigs and the extrinsic calibra-
tion implementation is preliminary. We plan to improve the
accuracy and robustness of the system in future work.

Figure 6 shows an anaglyph image captured by our sys-
tem. In this example, we use SIFT feature [17] matchings
to estimate the vertical offset and verify the alignment guid-
ance provided by our system. We first detect the SIFT fea-
tures in the left and right undistorted images. Then their
matches are found by computing the fundamental matrix in
a RANSAC [10] loop. For figure 6, we found 381 matched
pairs. The average value of vertical offset is 1.84 pixels.
And 121 match pairs have less than 1 pixel vertical offset,
which is shown in Figure 7.

6. Conclusion and discussion

In this paper, we propose a low cost, fast and accurate
high-definition camera calibration system. The system can
provide the relative camera orientation at an interactive rate.
The novel design of the marker chessboard, the key frame
selection algorithm and the bundle adjustment refinement
enable our system to automatically obtain accurate camera
intrinsic parameters in a short time. Also our extrinsic cal-
ibration system provides both 2D and 3D feedback to help
operators set the stereo camera to a desired orientation.
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Though the marker chessboard shows good performance
compared to the traditional chessboard, there are two as-
pects that a user should pay attention to. The first is that the
homography mapping may fail in the case of images with
very large distortion, e.g. the images taken from fisheye
cameras. The second is that the whole chessboard should be
captured without any occlusion, otherwise the corner posi-
tion can not be estimated. In practice this is not an extreme
constraint as the operator places the target in the scene;
alternatively, variants of the intrinsic estimation technique
could be developed that are robust to occlusion.

There are many applications that can benefit from our re-
search directly. For example, the chessboard can have more
inside corners, which will make the calibration more accu-
rate. And we can use multiple marker chessboards in the
3D calibration target by changing the marker code. Also,
the online intrinsic calibration becomes feasible because the
corner detection is faster than the camera frame rate.

There are several improvements or extensions that could
be made to our system. First, the camera model now used
does not consider the influence of rig mirror which reflects
or refracts light to the cameras. Second, the frame rate of
extrinsic calibration needs to be increased for more faster
response. Last but not least, we plan to use general fea-
ture points instead of chessboard corners to get the relative
camera pose in the future.
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