Morgan Kaufmann Publishers 8 December, 2015

e COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

| Chapter 5

| Large and Fast:
Exploiting Memory
Hierarchy

| Memory Technology

| Static RAM (SRAM)

0.5ns — 2.5ns, $2000 — $5000 per GB
Dynamic RAM (DRAM)

50ns — 70ns, $20 — $75 per GB
Magnetic disk

5ms — 20ms, $0.20 — $2 per GB
Ideal memory

Access time of SRAM

Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 1

Morgan Kaufmann Publishers 8 December, 2015

| Principle of Locality

| Programs access a small proportion of
their address space at any time

Temporal locality

Items accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables

Spatial locality

Items near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

| Taking Advantage of Locality

| Memory hierarchy
Store everything on disk
Copy recently accessed (and nearby)
items from disk to smaller DRAM memory
Main memory
Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory
Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 2

Morgan Kaufmann Publishers 8 December, 2015

| Memory Hierarchy Levels

| Block (aka line): unit of copying

May be multiple words
Processor

If accessed data is present in
upper level
Hit: access satisfied by upper level
u Hit ratio: hits/accesses
’—l If accessed data is absent

Miss: block copied from lower level
Time taken: miss penalty
Miss ratio: misses/accesses
=1 - hit ratio
| Then accessed data supplied from
upper level

Data is transferred

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

| Cache Memory

| Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses Xy, ..., X1, X,

X

Xp

X3

X3

a. Before the reference to X,

b. After the reference to X,

X4 X4 .

How do we know if
the data is present?

Xp-1 Xn-1

% % Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers

| Direct Mapped Cache

| Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

————————
oooooooo

#Blocks is a
power of 2

Use low-order
address bits

d { IS S

00001 00101 01001 01101 10001 10101 11001 11101
Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

| Tags and Valid Bits

| How do we know which particular block is
stored in a cache location?

Store block address as well as the data

Actually, only need the high-order bits
Called the tag

What if there is no data in a location?

Valid bit: 1 = present, 0 = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

8 December, 2015

Morgan Kaufmann Publishers

| Cache Example

| 8-blocks, 1 word/block, direct mapped
Initial state

Index
000
001
010
011
100
101
110
111

Tag Data

zlZzlz|Zz|Zz|IZz|Z2|Z2|<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

| Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110
Index \% Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
111 N
Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

8 December, 2015

Morgan Kaufmann Publishers

| Cache Example

Word addr Binary addr Hit/miss | Cache block
26 11 010 Miss 010

Index \% Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

| Cache Example

Word addr Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index \% Tag Data

000 N

001 N

010 Y |11 Mem[11010]

011 N

100 N

101 N

110 \4 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

8 December, 2015

Morgan Kaufmann Publishers

| Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index \Y Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem([10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

| Cache Example

Word addr Binary addr Hit/miss | Cache block
18 10 010 Miss 010

Index \% Tag Data

000 Y 10 Mem([10000]

001 N

010 Y |10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 \4 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

8 December, 2015

Morgan Kaufmann Publishers

| Address Subdivision

| Address (showing bit positions)
3130 --- 131211---2 10
Byte
offset
Hit 20 J1o
! Tag
Index Data
Index Valid Tag Data
0
1
2
1021
1022
1023
J20 .32
J

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

| Example: Larger Block Size

| 64 blocks, 16 bytes/block

To what block number does address 1200
map?

Block address =|1200/16] = 75
Block number = 75 modulo 64 = 11

31 10 9 4 3 0

| Tag Index | Offset |
22 hits 6 bits 4 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

8 December, 2015

Morgan Kaufmann Publishers

| Block Size Considerations

| Larger blocks should reduce miss rate
Due to spatial locality
But in a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

| Cache Misses

| On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

8 December, 2015

