
16 October 2015

Chapter 2 — Instructions: Language of the Computer 1

Chapter 2 — Instructions: Language of the Computer — 83

Synchronization

 Two processors sharing an area of memory
 P1 writes, then P2 reads

 Data race if P1 and P2 don’t synchronize
 Result depends of order of accesses

 Hardware support required
 Atomic read/write memory operation

 No other access to the location allowed between the
read and write

 Could be a single instruction
 E.g., atomic swap of register ↔ memory

 Or an atomic pair of instructions

§2.11 P
arallelism

 and Instructions: S
ynchronization

Chapter 2 — Instructions: Language of the Computer — 84

Synchronization in MIPS
 Load linked: ll rt, offset(rs)

 Store conditional: sc rt, offset(rs)
 Succeeds if location not changed since the ll

 Returns 1 in rt

 Fails if location is changed
 Returns 0 in rt

 Example: atomic swap (to test/set lock variable)
try: add $t0,$zero,$s4 ;copy exchange value

ll $t1,0($s1) ;load linked

sc $t0,0($s1) ;store conditional

beq $t0,$zero,try ;branch store fails

add $s4,$zero,$t1 ;put load value in $s4

$S4  memory Location

16 October 2015

Chapter 2 — Instructions: Language of the Computer 2

Chapter 2 — Instructions: Language of the Computer — 85

Translation and Startup

Many compilers produce
object modules directly

Static linking

§2.12 T
ranslating and S

tarting a P
rogram

Compiler

 Transforms HLL C programs into assembly

 Why HLL
 Fewer lines of code

 Easier to understand and debug

 Today’s optimizing compilers can produce
assembly code nearly as good as an
assembly language programming expert
and often better for large programs

Chapter 2 — Instructions: Language of the Computer — 86

16 October 2015

Chapter 2 — Instructions: Language of the Computer 3

Chapter 2 — Instructions: Language of the Computer — 87

Assembler Pseudoinstructions

 Syntax check

 Most assembler instructions represent
machine instructions one-to-one

 Pseudoinstructions: figments of the
assembler’s imagination
move $t0, $t1 → add $t0, $zero, $t1

blt $t0, $t1, L → slt $at, $t0, $t1

bne $at, $zero, L

 $at (register 1): assembler temporary

Other Assembler’s Tasks

 Converts pseudo-instr’s to legal assembly code

 Converts branches to far away locations into a
branch followed by a jump

 Converts instructions with large immediates into
a lui followed by an ori

 Converts numbers specified in decimal and
hexadecimal into their binary equivalents and
characters into their ASCII equivalents

 Deals with data layout directives (e.g., .asciiz)

 Expands macros (frequently used sequences of
instructions)

Chapter 2 — Instructions: Language of the Computer — 88

16 October 2015

Chapter 2 — Instructions: Language of the Computer 4

Chapter 2 — Instructions: Language of the Computer — 89

Producing an Object Module
 Assembler (or compiler) translates program into

machine instructions
 Provides information for building a complete

program from the pieces
 Header: described contents of object module
 Text segment: translated instructions
 Static data segment: data allocated for the life of the

program
 Relocation info: for contents that depend on absolute

location of loaded program
 On MIPS, j, and jal, also lw $t1, 100($zero)

 Symbol table: global definitions and external refs
 Debug info: for associating with source code

MIPS (spim) memory Allocation

Chapter 2 — Instructions: Language of the Computer — 90

230

words

0000 0000

f f f f f f f c

Text
Segment

Reserved

Static data

Mem Map I/O

0040 0000

1000 0000
1000 8000

7f f f f f fc
Stack

Dynamic data

$sp

$gp

PC

Kernel Code
& Data

16 October 2015

Chapter 2 — Instructions: Language of the Computer 5

Example

Chapter 2 — Instructions: Language of the Computer — 91

.data

.align 0
str: .asciiz "The answer is "
cr: .asciiz "\n"

.text

.align 2

.globl main

.globl printf
main: ori $2, $0, 5

syscall
move $8, $2

loop: beq $8, $9, done
blt $8, $9, brnc
sub $8, $8, $9
j loop

brnc: sub $9, $9, $8
j loop

done: jal printf

Gbl? Symbol Address

str 1000 0000

cr 1000 000b

yes main 0040 0000

loop 0040 000c

brnc 0040 001c

done 0040 0024

yes printf ???? ????

Relocation Info

Address Data/Instr

1000 0000 str

1000 000b cr

0040 0018 j loop

0040 0020 j loop

0040 0024 jal printf

0040 0000
0040 0004

0040 0008

0040 000c

0040 0010

0040 0014

0040 0018

0040 001c

Chapter 2 — Instructions: Language of the Computer — 92

Linking Object Modules

 Produces an executable image
1. Merges segments

2. Resolve labels (determine their addresses)

3. Patch location-dependent and external refs

 Could leave location dependencies for
fixing by a relocating loader
 But with virtual memory, no need to do this

 Program can be loaded into absolute location
in virtual memory space

16 October 2015

Chapter 2 — Instructions: Language of the Computer 6

Linking Two Object Files

Chapter 2 — Instructions: Language of the Computer — 93

H
dr

 T

xt
se

g

D
se

g

R

el
oc

S

m
tb

l
D

bg

File 1

H
dr

 T
xt

se
g

 D
se

g

 R
el

oc
 S

m
tb

l
D

bg

File 2

+

Executable

H
dr

 T

xt
se

g

D
se

g

R

el
oc

Chapter 2 — Instructions: Language of the Computer — 94

Loading a Program

 Load from image file on disk into memory
1. Read header to determine segment sizes

2. Create virtual address space

3. Copy text and initialized data into memory
 Or set page table entries so they can be faulted in

4. Set up arguments on stack

5. Initialize registers (including $sp, $fp, $gp)

6. Jump to startup routine
 Copies arguments to $a0, … and calls main

 When main returns, do exit syscall

16 October 2015

Chapter 2 — Instructions: Language of the Computer 7

Chapter 2 — Instructions: Language of the Computer — 95

Dynamic Linking
 Statically linking libraries mean that the library becomes

part of the executable code
 It loads the whole library even if only a small part is used (e.g.,

standard C library is 2.5 MB)

 What if a new version of the library is released ?

 (Lazy) dynamically linked libraries (DLL) – library
routines are not linked and loaded until a routine is called
during execution
 The first time the library routine called, a dynamic linker-loader

must
 find the desired routine, remap it, and “link” it to the calling routine

(see book for more details)

 DLLs require extra space for dynamic linking information, but do
not require the whole library to be copied or linked

Chapter 2 — Instructions: Language of the Computer — 96

ARM & MIPS Similarities
 ARM: the most popular embedded core
 Similar basic set of instructions to MIPS

§2.16 R
eal S

tuff: A
R

M
 Instructions

ARM MIPS

Date announced 1985 1985

Instruction size 32 bits 32 bits

Address space 32-bit flat 32-bit flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Registers 15 × 32-bit 31 × 32-bit

Input/output Memory
mapped

Memory
mapped

16 October 2015

Chapter 2 — Instructions: Language of the Computer 8

ARM Addressing Modes
Addressing Mode ARM MIPS

Register operand X X

Immediate operand X x

Register + offset X x

Register + register (indexed) X --

Register + scaled register (scaled) X --

Register + offset and update register X --

Register + register and update register X --

Autoincrement, autodecrement X --

PC-relative data x --

Chapter 2 — Instructions: Language of the Computer — 97

Chapter 2 — Instructions: Language of the Computer — 98

Compare and Branch in ARM

 Uses condition codes for result of an
arithmetic/logical instruction
 Negative, zero, carry, overflow

 Compare instructions to set condition codes
without keeping the result

 Each instruction can be conditional
 Top 4 bits of instruction word: condition value

 Can avoid branches over single instructions

16 October 2015

Chapter 2 — Instructions: Language of the Computer 9

Conditional Execution
Unconditional
gcd CMP r0, r1

BEQ end

BLT less

SUBS r0, r0, r1 ;

B gcd

less

SUBS r1, r1, r0 ;

B gcd

end

Conditional
gcd

CMP r0, r1

SUBGT r0, r0, r1

SUBLE r1, r1, r0

BNE gcd

Chapter 2 — Instructions: Language of the Computer — 99

int gcd(int a, int b)
{
while (a != b) {

if (a > b) a = a - b;
else b = b - a;
}

return a;
}

Chapter 2 — Instructions: Language of the Computer — 100

Instruction Encoding

16 October 2015

Chapter 2 — Instructions: Language of the Computer 10

Chapter 2 — Instructions: Language of the Computer — 101

The Intel x86 ISA

 Evolution with backward compatibility
 8080 (1974): 8-bit microprocessor

 Accumulator, plus 3 index-register pairs

 8086 (1978): 16-bit extension to 8080
 Complex instruction set (CISC)

 8087 (1980): floating-point coprocessor
 Adds FP instructions and register stack

 80286 (1982): 24-bit addresses, MMU
 Segmented memory mapping and protection

 80386 (1985): 32-bit extension (now IA-32)
 Additional addressing modes and operations

 Paged memory mapping as well as segments

§2.17 R
eal S

tuff: x86 Instructions

Chapter 2 — Instructions: Language of the Computer — 102

The Intel x86 ISA
 Further evolution…

 i486 (1989): pipelined, on-chip caches and FPU
 Compatible competitors: AMD, Cyrix, …

 Pentium (1993): superscalar, 64-bit datapath
 Later versions added MMX (Multi-Media eXtension)

instructions
 The infamous FDIV bug

 Pentium Pro (1995), Pentium II (1997)
 New microarchitecture (see Colwell, The Pentium Chronicles)

 Pentium III (1999)
 Added SSE (Streaming SIMD Extensions) and associated

registers

 Pentium 4 (2001)
 New microarchitecture
 Added SSE2 instructions

16 October 2015

Chapter 2 — Instructions: Language of the Computer 11

Chapter 2 — Instructions: Language of the Computer — 103

The Intel x86 ISA
 And further…

 AMD64 (2003): extended architecture to 64 bits
 EM64T – Extended Memory 64 Technology (2004)

 AMD64 adopted by Intel (with refinements)
 Added SSE3 instructions

 Intel Core (2006)
 Added SSE4 instructions, virtual machine support

 AMD64 (announced 2007): SSE5 instructions
 Intel declined to follow, instead…

 Advanced Vector Extension (announced 2008)
 Longer SSE registers, more instructions

 If Intel didn’t extend with compatibility, its
competitors would!
 Technical elegance ≠ market success

The Intel x86 ISA

 SSE5 announced by AMD in 2007
 170 instructions

 Adds three operand instructions

 Intel ships the Advanced Vector Extension
in 2011
 Expands he SSE registers from 128 to 256

 128 new instructions

Chapter 2 — Instructions: Language of the Computer — 104

16 October 2015

Chapter 2 — Instructions: Language of the Computer 12

Chapter 2 — Instructions: Language of the Computer — 105

Basic x86 Registers

Chapter 2 — Instructions: Language of the Computer — 106

Basic x86 Addressing Modes

 Two operands per instruction
Source/dest operand Second source operand

Register Register

Register Immediate

Register Memory

Memory Register

Memory Immediate

 Memory addressing modes
 Address in register

 Address = Rbase + displacement

 Address = Rbase + 2scale × Rindex (scale = 0, 1, 2, or 3)

 Address = Rbase + 2scale × Rindex + displacement

16 October 2015

Chapter 2 — Instructions: Language of the Computer 13

Chapter 2 — Instructions: Language of the Computer — 107

x86 Instruction Encoding

 Variable length
encoding
 Postfix bytes specify

addressing mode

 Prefix bytes modify
operation
 Operand length,

repetition, locking, …

Chapter 2 — Instructions: Language of the Computer — 108

Implementing IA-32

 Complex instruction set makes
implementation difficult
 Hardware translates instructions to simpler

microoperations
 Simple instructions: 1–1

 Complex instructions: 1–many

 Microengine similar to RISC

 Market share makes this economically viable

 Comparable performance to RISC
 Compilers avoid complex instructions

16 October 2015

Chapter 2 — Instructions: Language of the Computer 14

Chapter 2 — Instructions: Language of the Computer — 109

Fallacies

 Powerful instruction  higher performance
 Fewer instructions required

 But complex instructions are hard to implement
 May slow down all instructions, including simple ones

 Compilers are good at making fast code from simple
instructions

 Use assembly code for high performance
 But modern compilers are better at dealing with

modern processors

 More lines of code  more errors and less
productivity

§2.18 F
allacies and P

itfalls

Chapter 2 — Instructions: Language of the Computer — 110

Fallacies

 Backward compatibility  instruction set
doesn’t change
 But they do accrete more instructions

x86 instruction set

16 October 2015

Chapter 2 — Instructions: Language of the Computer 15

Chapter 2 — Instructions: Language of the Computer — 111

Pitfalls

 Sequential words are not at sequential
addresses
 Increment by 4, not by 1!

 Keeping a pointer to an automatic variable
after procedure returns
 e.g., passing pointer back via an argument

 Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 112

Concluding Remarks

 Design principles
1. Simplicity favors regularity
2. Smaller is faster
3. Make the common case fast
4. Good design demands good compromises

 Layers of software/hardware
 Compiler, assembler, hardware

 MIPS: typical of RISC ISAs
 c.f. x86

§2.19 C
oncluding R

em
arks

16 October 2015

Chapter 2 — Instructions: Language of the Computer 16

Chapter 2 — Instructions: Language of the Computer — 113

Concluding Remarks

 Measure MIPS instruction executions in
benchmark programs
 Consider making the common case fast
 Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP

Arithmetic add, sub, addi 16% 48%

Data transfer lw, sw, lb, lbu,
lh, lhu, sb, lui

35% 36%

Logical and, or, nor, andi,
ori, sll, srl

12% 4%

Cond. Branch beq, bne, slt,
slti, sltiu

34% 8%

Jump j, jr, jal 2% 0%

