
EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

Chapter Summary
 Stored-program concept
 Assembly language
 Number representation
 Instruction representation
 Supporting procedures in hardware
 MIPS addressing
 Some real-world stuff
 Fallacies and Pitfalls

Chapter 2 — Instructions: Language of the Computer — 2

Stored-Program Concept
 Program instructions are stored in the

memory.
 Every cycle, an instruction is read from the

memory (fetched).
 The instruction is examined to decide what

to do (decode)
 Then we perform the operation stated in

the instruction (execute)
 Fetch-Decode-Execute cycle.

Chapter 2 — Instructions: Language of the Computer — 5

Chapter 2 — Instructions: Language of the Computer — 6

Instruction Set
 The repertoire of instructions of a

computer
 Different computers have different

instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have simple
instruction sets RISC vs. CISC

§2.1 Introduction

Chapter 2 — Instructions: Language of the Computer — 7

The MIPS Instruction Set
 Used as the example throughout the book
 Stanford MIPS commercialized by MIPS

Technologies (www.mips.com)
 Large share of embedded core market

 Applications in consumer electronics, network/storage
equipment, cameras, printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E

The Four Design Principles
1. Simplicity favors regularity.
2. Smaller is faster.
3. Make the common case fast.
4. Good design demands good

compromises

Chapter 2 — Instructions: Language of the Computer — 8

Chapter 2 — Instructions: Language of the Computer — 9

Arithmetic Operations
 Add and subtract, three operands

 Two sources and one destination
add a, b, c # a gets b + c

 All arithmetic operations have this form
 Design Principle 1: Simplicity favors

regularity
 Regularity makes implementation simpler
 Simplicity enables higher performance at

lower cost

§2.2 O
perations of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 10

Arithmetic Example
 C code:
f = (g + h) - (i + j);

 Compiled MIPS code: (almost, this is not really assembly)

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 11

Register Operands
 Arithmetic instructions use register

operands
 MIPS has a 32 32-bit register file

 Use for frequently accessed data
 Numbered 0 to 31
 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values
 $s0, $s1, …, $s7 for saved variables

 Design Principle 2: Smaller is faster
 c.f. main memory: millions of locations

§2.3 O
perands of the C

om
puter H

ardw
are

Chapter 2 — Instructions: Language of the Computer — 12

Chapter 2 — Instructions: Language of the Computer — 13

Register Operand Example
 C code:
f = (g + h) - (i + j);

 f, …, j in $s0, …, $s4
 Compiled MIPS code: (This is a real assembly)

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 14

Memory Operands
 Main memory used for composite data

 Arrays, structures, dynamic data
 To apply arithmetic operations

 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian (The commercial MIPS, not
really, but in this course)
 Most-significant byte at least address of a word
 c.f. Little Endian: least-significant byte at least address

Memory Access

Chapter 2 — Instructions: Language of the Computer — 15

Alignment restriction: requires
that objects fall on address that
is multiple of their size

0 1 2 3
Aligned

Not
Aligned

0 1 2 3

0 1 2 3

big endian MSB LSB

little endian LSB MSB

Bytes address

Another way to put it
Big Endian: leftmost byte is word address
Little Endian: rightmost byte is word address

Chapter 2 — Instructions: Language of the Computer — 16

"Little-Endian" by R. S. Shaw - Own work. Licensed under Public Domain via
Commons - https://commons.wikimedia.org/wiki/File:Little-
Endian.svg#/media/File:Little-Endian.svg

Big-Endian Little-Endian

Loading and Storing Bytes
 MIPS provides special instructions to move bytes

 What 8 bits get loaded and stored?
 load byte places the byte from memory in the

rightmost 8 bits of the destination register
 what happens to the other bits in the register?

 store byte takes the byte from the rightmost 8 bits of a
register and writes it to the byte in memory
 leaving the other bytes in the memory word

unchanged

Chapter 2 — Instructions: Language of the Computer — 17

lb $t0, 1($s3) #load byte from memory

sb $t0, 6($s3) #store byte to memory

Example

Chapter 2 — Instructions: Language of the Computer — 18

 Given the following code sequence and memory
state what is the state of the memory after
executing the code?

add $s3, $zero, $zero
lb $t0, 1($s3)
sb $t0, 6($s3)
Memory

0x 0 0 9 0 1 2 A 0
Data

0

4

8

12

16

20

24

0x F F F F F F F F

0x 0 1 0 0 0 4 0 2

0x 1 0 0 0 0 0 1 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

0x 0 0 0 0 0 0 0 0

 What value is left in $t0?

 What if the machine was little
Endian?

 What word is changed in Memory
and to what?

$t0 = 0x00000090

mem(4) = 0xFFFF90FF

$t0 = 0x00000012
mem(4) = 0xFF12FFFF0

4

8

12

16

20

24

Example

Chapter 2 — Instructions: Language of the Computer — 19

$3

$12

lbu $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 20

$3

$12

lb $12, 2($3)

0x10001000

0xF2 0x10001002

Byte address

Example

Chapter 2 — Instructions: Language of the Computer — 21

$3

$11
$12

sb $12, 2($3)

0x10001000

?? 0x10001002

Byte address

0xA011C1D1

Chapter 2 — Instructions: Language of the Computer — 22

Byte/Halfword Operations
 Could use bitwise operations
 MIPS byte/halfword load/store

 String processing is a common case
lb rt, offset(rs) lh rt, offset(rs)

 Sign extend to 32 bits in rt
lbu rt, offset(rs) lhu rt, offset(rs)

 Zero extend to 32 bits in rt
sb rt, offset(rs) sh rt, offset(rs)

 Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 23

Memory Operand Example 1
 C code:
g = h + A[8];

 g in $s1, h in $s2, base address of A in $s3
 Compiled MIPS code:

 Index 8 requires offset of 32
 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 24

Memory Operand Example 2
 C code:
A[12] = h + A[8];

 h in $s2, base address of A in $s3
 Compiled MIPS code:

 Index 8 requires offset of 32
lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 25

Registers vs. Memory
 Registers are faster to access than

memory
 Operating on memory data requires loads

and stores
 More instructions to be executed

 Compiler must use registers for variables
as much as possible
 Only spill to memory for less frequently used

variables
 Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 26

Immediate Operands
 Constant data specified in an instruction
addi $s3, $s3, 4

 No subtract immediate instruction
 Just use a negative constant
addi $s2, $s1, -1

 Design Principle 3: Make the common
case fast
 Small constants are common
 Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 27

The Constant Zero
 MIPS register 0 ($zero) is the constant 0

 Cannot be overwritten
 Useful for common operations

 E.g., move between registers
add $t2, $s1, $zero

