The University of Adelaide, School of Computer Science 23 September 2015

© COMPUTER ORGANIZATION AND DESIG

‘ EECS 2021
Computer Organization

Fall 2015

Based on slides by the author and prof.
Mary Jane Irwin of PSU.

| Chapter Summary

| Stored-program concept
Assembly language
Number representation
Instruction representation
Supporting procedures in hardware
MIPS addressing
Some real-world stuff
Fallacies and Pitfalls

Chapter 2 — Instructions: Language of the Computer — 2

| Stored-Program Concept

| Program instructions are stored in the
memory.

Every cycle, an instruction is read from the
memory (fetched).

The instruction is examined to decide what
to do (decode)

Then we perform the operation stated in
the instruction (execute)

Fetch-Decode-Execute cycle.

Chapter 2 — Instructions: Language of the Computer — 5

Chapter 2 — Instructions: Language of the Computer 1

The University of Adelaide, School of Computer Science 23 September 2015

‘ Instruction Set
The repertoire of instructions of a

computer
Different computers have different
instruction sets

But with many aspects in common
Early computers had very simple
instruction sets

Simplified implementation
Many modern computers also have simple
instruction sets RISC vs. CISC

Chapter 2 — Instructions: Language of the Computer — 6

‘ The MIPS Instruction Set
Used as the example throughout the book
Stanford MIPS commercialized by MIPS
Technologies ()

Large share of embedded core market
Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 7

‘ The Four Design Principles
Simplicity favors regularity.
Smaller is faster.

Make the common case fast.

Good design demands good
compromises

Chapter 2 — Instructions: Language of the Computer — 8

Chapter 2 — Instructions: Language of the Computer 2

The University of Adelaide, School of Computer Science

| Arithmetic Operations

| Add and subtract, three operands
Two sources and one destination
add a, b, ¢ # agets b + ¢
All arithmetic operations have this form
Design Principle 1: Simplicity favors
regularity
Regularity makes implementation simpler

Simplicity enables higher performance at
lower cost

Chapter 2 — Instructions: Language of the Computer — 9

| Arithmetic Example

| C code:
f=@+h -G+ J);
Comp”ed MIPS COde (almost, this is not really assembly)

add tO, g, h # temp tO g+h
add t1, i, j # temp tl i+]
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 10

| Register Operands

| Arithmetic instructions use register
operands
MIPS has a 32 32-bit register file
Use for frequently accessed data
Numbered 0 to 31
32-bit data called a “word”
Assembler names
$t0, $t1, ..., $t9 for temporary values
$s0, $s1, ..., $s7 for saved variables
Design Principle 2: Smaller is faster
c.f. main memory: millions of locations

Chapter 2 — Instructions: Language of the Computer — 11

Chapter 2 — Instructions: Language of the Computer

23 September 2015

The University of Adelaide, School of Computer Science

Chapier < — msuuvuuns. Language of the Computer — 12

23 September 2015

| Register Operand Example

C code:

f=@+h -G+ J);
f,...,]in$s0, ..., $s4

Comp”ed MIPS COde (This is a real assembly)

add $t0, $sl, $s2
add $tl, $s3, $s4
sub $s0, $t0, $tl

Chapter 2 — Instructions: Language of the Computer — 13

| Memory Operands

Main memory used for composite data
Arrays, structures, dynamic data
To apply arithmetic operations
Load values from memory into registers
Store result from register to memory
Memory is byte addressed
Each address identifies an 8-bit byte
Words are aligned in memory
Address must be a multiple of 4
MIPS is Big Endian (The commercial MIPS, not
really, but in this course)
Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 14

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science

Memory Access

Another way to put it
leftmost byte is word address

Big Endian:
Little Endian: rightmost byte is word address
little endian LSB MSB
Bytes address ‘ 0 ‘ 1 ‘ 2 ‘ 3 ‘
big endian MSB LSB 0 1 2 3

Alignment restriction: requires

that objects fall on address that

is multiple of their size _ Not
Aligned

Chapter 2 — Instructions: Language of the Computer — 15

| I2-bitinteger 32-bit integer

23 September 2015

vemory | 0AOBOCOD [0aoBoCOD| Memory
/oAl I—- a:lop|
a+1:|0B| < a+L:[oC

a+2:/0C a+2:| 0B,

a+3:0D| = a+3: 0A

o Big-endian Line-endian =1
Big-Endian Little-Endian

“Litte-Endian” by R. S. Shaw - Own work. Licensed under Public Domain via
Commons - hitps://commons.wikimedia.org/wiki/File:Little-

Endian svg#media/File:Litte-Endian.svg

Chapter 2 — Instructions: Language of the Computer — 16

| Loading and Storing Bytes

| MIPS provides special instructions to move bytes
Ib $t0, 1($s3) #load byte from memory
sb $t0, 6($s3) #store byte to memory

What 8 bits get loaded and stored?
load byte places the byte from memory in the
rightmost 8 bits of the destination register
what happens to the other bits in the register?
store byte takes the byte from the rightmost 8 bits of a
register and writes it to the byte in memory
leaving the other bytes in the memory word
unchanged

Chapter 2 — Instructions: Language of the Computer — 17

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 23 September 2015

Example
| p

| Given the following code sequence and memory
state what is the state of the memory after
executing the code?

add $s3, $zero, $zero

Ib $t0, 1($s3) .)
sb $t0, 6($s3) What value is left in $t0?

Memory $t0 = 0x00000090
24 0x00000000 | 24
20| 0x00000000 | 20 What word is changed in Memory
16| 0x00000000 | 16 and to what?
12/ 0x10000010 | 12 mem(4) = OXFFFFO0FF
8 |0x01000402) 8 What if the machine was little
4 | OxFFFFFFFF| 4 Endian? t0 = 0x00000012
0 [0x009012A0| 0 mem(4) = OXFF12FFFF

Data

Chapter 2 — Instructions: Language of the Computer — 18

Example
|

| Byte address

$3 | 0x10001000

O0xF2 0x10001002

$12

lbu $12, 2($3)

Chapter 2 — Instructions: Language of the Computer — 19

| Example

| Byte address

$3 | 0x10001000

OxF2 0x10001002

$12

b $12, 2($3)

Chapter 2 — Instructions: Language of the Computer — 20

Chapter 2 — Instructions: Language of the Computer 6

The University of Adelaide, School of Computer Science 23 September 2015

Example
Byte address

$3 | 0x10001000

$11 ?? 0x10001002

G‘(\
$12 | 0xA011C1D1 O‘e‘?’

sb $12, 2($3)

Chapter 2 — Instructions: Language of the Computer — 21

‘ Byte/Halfword Operations
Could use bitwise operations
MIPS byte/halfword load/store

String processing is a common case

Ib rt, offset(rs) lh rt, offset(rs)
Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)
Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)
Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 22

‘ Memory Operand Example 1
C code:

g = h + A[8];
gin $s1, hin $s2, base address of A in $s3
Compiled MIPS code:
Index 8 requires offset of 32
4 bytes per word
Iw $t0, 32($s3) # load word
add $s1,/$s2, |$t0

Chapter 2 — Instructions: Language of the Computer — 23

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science 23 September 2015

‘ Memory Operand Example 2
C code:

A[12] = h + A[8];

h in $s2, base address of A in $s3
Compiled MIPS code:

Index 8 requires offset of 32

Iw $t0, 32($s3) # load word
add $t0, $s2, $tO
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 24

‘ Registers vs. Memory
Registers are faster to access than
memory
Operating on memory data requires loads
and stores
More instructions to be executed
Compiler must use registers for variables
as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 25

‘ Immediate Operands
Constant data specified in an instruction
addi $s3, $s3, 4

No subtract immediate instruction

Just use a negative constant

addi $s2, $s1, -1
Design Principle 3: Make the common
case fast

Small constants are common

Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 26

Chapter 2 — Instructions: Language of the Computer 8

The University of Adelaide, School of Computer Science 23 September 2015

‘ The Constant Zero
MIPS register 0 ($zero) is the constant O
Cannot be overwritten
Useful for common operations

E.g., move between registers
add $t2, $sl, $zero

Chapter 2 — Instructions: Language of the Computer — 27

Chapter 2 — Instructions: Language of the Computer 9

