The University of Adelaide, School of Computer Science 28 September 2015

‘ Unsigned Binary Integers
Given an n-bit number

_ n-1 n-2 1 0
X=X 42" +X, 52" "+ + %2 +X%X,2

Range: 0 to +2" — 1
Example

0000 0000 0000 0000 0000 0000 0000 1011,
=0+... + 1x23 + 0x22 +1x21 +1x20
=0+..+8+0+2+1=11,

Using 32 bits
0 to +4,294,967,295

Chapter 2 — Instructions: Language of the Computer — 28

‘ 2s-Complement Signed Integers
Given an n-bit number

_ n-1 n-2 1 0
X=X, 42" +X, 2" 4+ X2 + X, 2

Range: —2n-1to +27 -1 -1
Example

1111 1111 1111 1111 1111 1111 1111 1100,
= —1x231 + 1x230 + |+ 1x22 +0x21 +0x20
=-2,147,483,648 + 2,147,483,644 = 4,

Using 32 bits
—2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 29

2s-Complement Signed Integers
Bit 31 is sign bit

1 for negative numbers

0 for non-negative numbers
—(=2n-1) can'’t be represented
Non-negative numbers have the same unsigned
and 2s-complement representation
Some specific numbers

0: 0000 0000 ... 0000

-1 11111111 1111

Most-negative: 1000 0000 ... 0000

Most-positive: 0111 1111 ... 1111

Chapter 2 — Instructions: Language of the Computer — 30

Chapter 2 — Instructions: Language of the Computer 1

The University of Adelaide, School of Computer Science

‘ Signed Negation

Complement and add 1
Complement means 1 — 0,0 — 1

X+x=1111...111, = -1

X+1=—x

Example: negate +2
+2 = 0000 0000 ... 0010,

-2=11111111 ... 1101, +1
=111 1111 ... 1110,

Chapter 2 — Instructions: Language of the Computer — 31

28 September 2015

y 2'sc binary | decimal

2's Complement = [=
“@-1)=| 1001 7
- 1010 -6
— 1011 5
complement all the bits 1100 -4
1101 3

0101
and add a 1 1:? f
0110 (6) 0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
2.1 = 0111 7

Chapter 2 — Instructions: Language of the Computer — 32

‘ Sign Extension
Representing a number using more bits

Preserve the numeric value
In MIPS instruction set

addi: extend immediate value

Ib, Ih: extend loaded byte/halfword

beq, bne: extend the displacement
Replicate the sign bit to the left

c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit

+2: 0000 0010 => 000 0010

-2: 11111110 => 1111110

Chapter 2 — Instructions: Language of the Computer — 33

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 28 September 2015

‘ Representing Instructions
Instructions are encoded in binary
Called machine code
MIPS instructions

Encoded as 32-bit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

Regularity!

Register numbers
$t0 — $t7 are reg’s 8 — 15
$t8 — $t9 are reg’'s 24 — 25
$s0 — $s7 are reg’'s 16 — 23

Chapter 2 — Instructions: Language of the Computer — 34

‘ MIPS R-format Instructions
| op | rs | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
Instruction fields
op: operation code (opcode)
rs: first source register number
rt: second source register number
rd: destination register number
shamt: shift amount (00000 for now)

funct: function code (extends opcode, selects
the specific variant of the operation specified
in the opcode field)

Chapter 2 — Instructions: Language of the Computer — 35

‘ R-format Example
| [o [n]

op rs rt rd | shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add $t $s1, $s2

|§pecia|| $M $t0 | 0 | add |
\ Z /
[o [v [] &40 []

| 000000 | 10001 | 10010 | 01000 [00000 | 100000 |

[60000610001100100100000000100000, = 026824020,

Chapter 2 — Instructions: Language of the Computer — 36

Chapter 2 — Instructions: Language of the Computer 3

The University of Adelaide, School of Computer Science 28 September 2015

| Hexadecimal

| Base 16
Compact representation of bit strings
4 bits per hex digit

0 [0000 (4 (0100 |8 (1000 |c |1100
1 0001 |5 (0101 |9 |1001 |d |1101
2 |0010 |6 (0110 |a |1010 |e |1110
3 0011 |7 0111 (b [1011 |f |1111

Example: eca8 6420
1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 37

| MIPS I-format Instructions

Immediate arithmetic and load/store instructions
rt: destination -- rs source register number
Constant: —2'5 to +215 - 1
Address: offset added to base address in rs
Design Principle 4: Good design demands
good compromises

Different formats complicate decoding, but allow 32-bit
instructions uniformly

Keep formats as similar as possible

op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

Chapter 2 — Instructions: Language of the Computer — 38

| MIPS I-format Instructions

op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

addi $t0, $s1, 10

| addi | ﬁito | $s1 | constant |
1
[e [8 [v] 10 |
Y v 1y N
| 001000 | 10000 | 10001 [0000000000001010 |

Chapter 2 — Instructions: Language of the Computer — 39

Chapter 2 — Instructions: Language of the Computer 4

The University of Adelaide, School of Computer Science 28 September 2015

‘ Stored Program Computers
Instructions represented in

binary, just like data
Instructions and data stored

! in memory
| Edtorprogram | Programs can operate on
LTINS programs
Processar i (maching oo i e.g., compilers, linkers, ...
Binary compatibility allows

compiled programs to work
{ on different computers
| SoucecodeinC | Standardized ISAs

| for editor program

Chapter 2 — Instructions: Language of the Computer — 40

‘ Logical Operations
Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sl

Shift right >> >>> srl
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ nor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 41

‘ Shift Operations

| op | rs | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
shamt: how many positions to shift
Shift left logical

Shift left and fill with O bits
sI 1 by i bits multiplies by 2!
Shift right logical
Shift right and fill with 0 bits
srl by i bits divides by 2 (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 42

Chapter 2 — Instructions: Language of the Computer 5

The University of Adelaide, School of Computer Science 28 September 2015

| AND Operations

| Useful to mask bits in a word
Select some bits, clear others to 0

and $t0, $tl1, $t2

$t2 ‘ 0000 0000 0000 0000 0000 1101 1100 0000 ‘
$t1 ‘ 0000 0000 0000 0000 0d11 1100 0000 0000 ‘

$t0 ‘ 0000 0000 0000 0000 0000 1100 0000 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 43

| OR Operations

| Useful to include bits in a word
Set some bits to 1, leave others unchanged
or $t0, $t1, $t2

$t2 ‘ 0000 0000 0000 0000 0000 1101 1100 0000 ‘

$t1 ‘ 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$t0 ‘ 0000 0000 0000 0000 0011 1101 1100 0000 ‘

Chapter 2 — Instructions: Language of the Computer — 44

| NOT Operations

| Useful to invert bits in a word
Change Oto1,and 1to 0

MIPS has NOR 3-operand instruction
aNORb==NOT (aORb)

nor $t0, $tl1l, $zero

| Register 0: always
read as zero
$zero | 0000 0000 0000 0000 0000 0000 0000 0000 ‘
$t1 | 0000 0000 0000 0000 0011 1100 0000 0000 ‘

$to ‘1111 1111 1111 1111 1100 0011 1111 1111‘

Chapter 2 — Instructions: Language of the Computer — 45

Chapter 2 — Instructions: Language of the Computer

The University of Adelaide, School of Computer Science 28 September 2015

‘ Conditional Operations
Branch to a labeled instruction if a
condition is true
Otherwise, continue sequentially
beq rs, rt, L1
if (rs == rt) branch to instruction labeled L1;
bne rs, rt, L1
if (rs 1= rt) branch to instruction labeled L1;
j L
unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 46

‘ Conditional Operations
beq $So’ $Sl’ Ll How to specify L1
bne $s0, $s1, L1
Instruction format

| op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

[5 [16 [17] L1 |

[4] 16 [17] L1 |

Chapter 2 — Instructions: Language of the Computer — 47

‘Specifying Branch Destination
We could specify the memory location, but

that will require 32 bits ???
Can use a base register, the base register
is PC
Limits jumps to -215 — 215 -1
In reality, 00 is appended to the immediate
thus instructions (words not bytes)

Chapter 2 — Instructions: Language of the Computer — 48

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science 28 September 2015

| Branch destination

from the low order 16 bits of the branch instruction

branch dst

32 32
o :@32 address
32 47 32

Chapter 2 — Instructions: Language of the Computer — 49

| Jump instruction
| J Label #go to label

| op | 26-bit address |
6 bits
| 2 | XXXX...XX |

Again, concatenating 00 increase the
effective number to 28 + the left-most 4
bits of the PC (added to the PC)

Chapter 2 — Instructions: Language of the Computer — 50

| Jump instruction

from the low order 26 bits of the jump instruction

Chapter 2 — Instructions: Language of the Computer — 51

Chapter 2 — Instructions: Language of the Computer

