
Chapter 2 — Instructions: Language of the Computer — 52

Branch Addressing
 Branch instructions specify

 Opcode, two registers, target address
 Most branch targets are near branch

 Forward or backward

op rs rt constant or address
6 bits 5 bits 5 bits 16 bits

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 53

Jump Addressing
 Jump (j and jal) targets could be

anywhere in text segment
 Encode full address in instruction

op address
6 bits 26 bits

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 54

Target Addressing Example
 Loop code from earlier example

 Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 4 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 55

Compiling If Statements
 C code:
if (i==j) f = g+h;
else f = g-h;

 f, g, … in $s0, $s1, …
 Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

i j

Chapter 2 — Instructions: Language of the Computer — 56

Compiling Loop Statements
 C code:
while (save[i] == k) i += 1;

 i in $s3, k in $s5, address of save in $s6
 Compiled MIPS code:
Loop: sll $t1, $s3, 2

add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Multiply i by 4

Address of
save[i]

save[i]

Chapter 2 — Instructions: Language of the Computer — 57

Basic Blocks
 A basic block is a sequence of instructions

with
 No embedded branches (except at end)
 No branch targets (except at beginning)

 A compiler identifies basic
blocks for optimization

 An advanced processor
can accelerate execution
of basic blocks

Compiling Case Statement

Chapter 2 — Instructions: Language of the Computer — 58

switch (k) {
case 0: h=i+j; break; /*k=0*/
case 1: h=i+h; break; /*k=1*/
case 2: h=i-j; break; /*k=2*/

 Assuming three sequential words in
memory starting at the address in $t4
have the addresses of the labels L0, L1,
and L2 and k is in $s2

add $t1, $s2, $s2 #$t1 = 2*k
add $t1, $t1, $t1 #$t1 = 4*k
add $t1, $t1, $t4 #$t1 = addr of JumpT[k]
lw $t0, 0($t1) #$t0 = JumpT[k]
jr $t0 #jump based on $t0

L0: add $s3, $s0, $s1 #k=0 so h=i+j
j Exit

L1: add $s3, $s0, $s3 #k=1 so h=i+h
j Exit

L2: sub $s3, $s0, $s1 #k=2 so h=i-j
Exit: . . .

$t4

L2
L1
L0

Memory

Chapter 2 — Instructions: Language of the Computer — 61

More Conditional Operations
 Set dest to 1 if a condition is true

 Otherwise, set to 0
 slt rd, rs, rt

 if (rs < rt) rd = 1; else rd = 0;
 slti rt, rs, constant

 if (rs < constant) rt = 1; else rt = 0;
 Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 62

Branch Instruction Design
 Why not blt, bge, etc?
 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!
 beq and bne are the common case
 This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 63

Signed vs. Unsigned
 Signed comparison: slt, slti
 Unsigned comparison: sltu, sltui
 Example

 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001
 slt $t0, $s0, $s1 # signed

 –1 < +1  $t0 = 1
 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1  $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 64

Procedure Calling
 Steps required

1. Place parameters in a place where the
procedure can access them

2. Transfer control to procedure
3. Acquire storage (resources) for procedure
4. Perform procedure’s operations
5. Place result in a place where the caller can

access them.
6. Return to place of call

§2.8 S
upporting P

rocedures in C
om

puter H
ardw

are

Chapter 2 — Instructions: Language of the Computer — 65

Register Usage
 $a0 – $a3: arguments (reg’s 4 – 7)
 $v0, $v1: result values (reg’s 2 and 3)
 $t0 – $t9: temporaries

 Can be overwritten by callee
 $s0 – $s7: saved

 Must be saved/restored by callee
 $gp: global pointer for static data (reg 28)
 $sp: stack pointer (reg 29)
 $fp: frame pointer (reg 30)
 $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 66

Procedure Call Instructions
 Procedure call: jump and link
jal ProcedureLabel

 Address of following instruction put in $ra
 Jumps to target address

 Procedure return: jump register
jr $ra

 Copies $ra to program counter
 Can also be used for computed jumps

 e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 67

Leaf Procedure Example
 C code:
int leaf_example (int g, h, i, j)
{ int f;
f = (g + h) - (i + j);
return f;

}

 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0
 Will need $t0, and $t1 in the calculation of f

Stack
 The best way to store registers is a stack
 A stack is a first-in-last-out data structure
 Stack pointer points to the last element in

the stack (or the first empty place).
 Traditionally stack grows from higher to

lower addresses

Chapter 2 — Instructions: Language of the Computer — 68

used

empty

$sp used

$t1

$sp
$t0

empty

The stack
The stack after pushing $t1 $t0 and $s0

$s0

Procedure Call

Chapter 2 — Instructions: Language of the Computer — 69

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

leaf_example:
addi $sp, $sp, -12#adjust stack to make room for 3 items
sw $t1, 8($sp) # push $t1
sw $t0, 4($sp) # push $t0
sw $s0, 0($sp) # push $s0

Save registers

??

Procedure Call

Chapter 2 — Instructions: Language of the Computer — 70

add $t0, $a0, $a1 #$t0 = g+h
add $t1, $a2, $a3 #$t1 = i+j
sub $s0, $t0, $t1 #$s0 = (g+h)-(i+j)

add $v0, $s0, $zero #put the result in $v0

lw $s0, 0($sp) #restore $s0
add $t0, 4($sp) #restore $t0
sub $t1, 8($sp) #restore $t1
addi $sp, $sp, 12 #restore $sp

jr $ra #jump back to the calling routing

Do calculation

put result in $v0

Clean up (remove data
from the stack)

Return control to caller

Chapter 2 — Instructions: Language of the Computer — 71

Leaf Procedure Example
 MIPS code:
leaf_example:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 72

Non-Leaf Procedures
 Procedures that call other procedures
 For nested call, caller needs to save on the

stack:
 Its return address
 Any arguments and temporaries needed after

the call
 Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 73

Non-Leaf Procedure Example
 C code:
int fact (int n)
{
if (n < 1) return f;
else return n * fact(n - 1);

}

 Argument n in $a0
 Result in $v0

Chapter 2 — Instructions: Language of the Computer — 74

Non-Leaf Procedure Example
 MIPS code:

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
lw $a0, 0($sp) # restore original n
lw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $v0 # multiply to get result
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 75

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage
 Fixed, does not change during the function execution
 A stable base register to address for local memory reference

Points to the
1st word in the
procedure
frame

Chapter 2 — Instructions: Language of the Computer — 76

Memory Layout
 Text: program code
 Static data: global

variables
 e.g., static variables in C,

constant arrays and strings
 $gp initialized to address

allowing ±offsets into this
segment

 Dynamic data: heap
 E.g., malloc in C, new in

Java
 Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 77

Character Data
 Byte-encoded character sets

 ASCII: 128 characters
 95 graphic, 33 control

 Latin-1: 256 characters
 ASCII, +96 more graphic characters

 Unicode: 32-bit character set
 Used in Java, C++ wide characters, …
 Most of the world’s alphabets, plus symbols
 UTF-8, UTF-16: variable-length encodings

§2.9 C
om

m
unicating w

ith P
eople

Chapter 2 — Instructions: Language of the Computer — 78

String Copy Example
 C code (naïve):

 Null-terminated string
void strcpy (char x[], char y[])
{ int i;
i = 0;
while ((x[i]=y[i])!='\0')
i += 1;

}

 Addresses of x, y in $a0, $a1
 i in $s0

Chapter 2 — Instructions: Language of the Computer — 79

String Copy Example
 MIPS code:

strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 80

0000 0000 0011 1101 0000 0000 0000 0000

32-bit Constants
 Most constants are small

 16-bit immediate is sufficient
 For the occasional 32-bit constant
lui rt, constant

 Copies 16-bit constant to left 16 bits of rt
 Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§2.10 M
IP

S
 A

ddressing for 32-B
it Im

m
ediates and A

ddressesZero extended

Load 4,000,000 in $s0

Chapter 2 — Instructions: Language of the Computer — 81

Branching Far Away
 If branch target is too far to encode with

16-bit offset, assembler rewrites the code
 Example

beq $s0,$s1, L1

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 82

Addressing Mode Summary

