The University of Adelaide, School of Computer Science 28 September 2015

‘ Branch Addressing
Branch instructions specify
Opcode, two registers, target address

Most branch targets are near branch
Forward or backward

| op | rs | rt | constant or address |
6 bits 5 bits 5 bits 16 bits

PC-relative addressing
Target address = PC + offset x 4
PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 52

‘ Jump Addressing
Jump (J and jal) targets could be
anywhere in text segment
Encode full address in instruction

| op | address
6 bits 26 bits

(Pseudo)Direct jump addressing
Target address = PC3 .5 : (address x 4)

Chapter 2 — Instructions: Language of the Computer — 53

‘ Target Addressing Example
Loop code from earlier example

Assume Loop at location 80000

Loop: sl $t1, $s3, 2 80000 0 [0 [19] 940
add $t1, $t1l, $s6 80004 -0 | 9 | 22| 9 [o |32
v $t0, 0($tl) 80008 | 35| 9 | 8 0
bne $t0, $s5, Exit 80012 | 5 | 8 | 21 2
addi $s3, $s3, 1 80016 | 8 | 19 |19 1
i Loop 80020 | 2 20000

Exit: . 80024

Chapter 2 — Instructions: Language of the Computer — 54

Chapter 2 — Instructions: Language of the Computer 1

The University of Adelaide, School of Computer Science 28 September 2015

‘ Compiling If Statements
C code:
if (i==j) f = g+h; | P

else f = g-h;
f, g, ...in $s0, $s1, ...

Compiled MIPS code:[7] o] 3|
bne $s3, $34,E(
add $s0, $sl, $s2
j Exit

Else: sub $s0, $s1, $s2

Exit: =

| oo | | oo |

‘ Assembler calculates addresses |

Chapter 2 — Instructions: Language of the Computer — 55

‘ Compiling Loop Statements
C code:

while (save[i] == k) 1 += 1;

i in $s3, k in $s5, address of save in $s6
Compiled MIPS code: | Aty by |
Loop: sil $tl, $s3, 2

add $t1, $t1, $s6+——| Address of
AR o
bne $t0, $s5, Exit
addi $s3, $s3, 1
] Loop
Exit: ..

Chapter 2 — Instructions: Language of the Computer — 56

‘ Basic Blocks
A basic block is a sequence of instructions

with
No embedded branches (except at end)
No branch targets (except at beginning)

A compiler identifies basic
blocks for optimization

An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 57

Chapter 2 — Instructions: Language of the Computer 2

The University of Adelaide, School of Computer Science 28 September 2015

Compiling Case Statement
Memory
case 0- "h=i+j; break; /*k=0*/
case 1: h=i+h; break; /*k=1*/ L2
case 2: h=i-j; break; /*k=2*/ 01
Assuming three sequential words in $t4>[o
memory starting at the address in $t4
have the addresses of the labels LO, L1,
and L2 and k is in $s2
add $t1, $s2, $s2 #$t1 = 2*k
add $t1, $tl1, $tl #tl = 4%k
add $t1, $t1, $t4 #%tl = addr of JumpT[k]
Iw $t0, 0($tl) #$t0 = JumpT[k]
ir $t0 #jump based on $tO
LO: add $s3, $s0, $si #k=0 so h=i+j
j Exit
L1: add $s3, $s0, $s3 #k=1 so h=i+h
i Exit
L2: sub $s3, $s0, $sl #k=2 so h=i-j
Exity . . . Chapter 2 — Instructions: Language of the Computer — 58

More Conditional Operations

Set dest to 1 if a condition is true
Otherwise, setto 0
slt rd, rs, rt
if (rs<rt)rd=1; else rd = 0;
slti rt, rs, constant
if (rs < constant) rt = 1; else rt = 0;
Use in combination with beq, bne

slt $t0, $s1, $s2 # if ($sl < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 61

Branch Instruction Design

Why not blt, bge, etc?
Hardware for <, 2, ... slower than =, #

Combining with branch involves more work
per instruction, requiring a slower clock

All instructions penalized!
beq and bne are the common case
This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 62

Chapter 2 — Instructions: Language of the Computer 3

The University of Adelaide, School of Computer Science 28 September 2015

‘ Signed vs. Unsigned
Signed comparison: slt, slti

Unsigned comparison: sltu, sltui

Example
$s0 = 1111 1111 1111 1111 1111 1111 1111 1111
$s1 = 0000 0000 0000 0000 0000 0000 0000 0001
slt $t0, $s0, $s1 # signed

1<+ =$t0=1

sltu $t0, $s0, $s1 # unsigned
+4,294,967,295 > +1 = $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 63

_‘PrLedure Calling
Steps required
Place parameters in a place where the
procedure can access them
Transfer control to procedure
Acquire storage (resources) for procedure

Perform procedure’s operations

Place result in a place where the caller can
access them.

Return to place of call

Chapter 2 — Instructions: Language of the Computer — 64

‘ Register Usage
$a0 — $a3: arguments (reg's 4 — 7)
$v0, $v1: result values (reg’s 2 and 3)

$t0 — $t9: temporaries
Can be overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)
$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)

$ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 65

Chapter 2 — Instructions: Language of the Computer 4

The University of Adelaide, School of Computer Science 28 September 2015

‘ Procedure Call Instructions
Procedure call: jump and link
jal ProcedurelLabel
Address of following instruction put in $ra
Jumps to target address
Procedure return: jump register
Jjr $ra

Copies $ra to program counter

Can also be used for computed jumps
e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 66

‘ Leaf Procedure Example
C code:

int leaf_example (int g, h, i, j)
{ int T;
f=@+h - 0G+]J);
return T;
}
Arguments g, ...,jin $
) - fin (hence, need to save $s0 on stack)
Result in
Will need , and in the calculation of ¥

Chapter 2 — Instructions: Language of the Computer — 67

‘ Stack
The best way to store registers is a stack

A stack is a first-in-last-out data structure
Stack pointer points to the last element in
the stack (or the first empty place).
Traditionally stack grows from higher to
lower addresses

The stack
The stack after pushing $t1 $t0 and $s0

$sp used used
—

t1
S $s0

empty

Chapter 2 — Instructions: Language of the Computer — 68

Chapter 2 — Instructions: Language of the Computer 5

The University of Adelaide, School of Computer Science

| Procedure Call

| int leaf_example (int g, h, i, j)
{ int f;

f=(@+h -G+

return f;

leaf_example:

addi $sp, $sp, -12

sw $tl, 8($sp)

sw $t0, 4($sp) 77

sw $s0, 0($sp) \

Save registers

Chapter 2 — Instructions: Language of the Computer — 69

| Procedure Call

|add $t0, $a0, $al — Do calculation
add $t1, $a2, $a3
sub $s0, $t0, $tl

add $v0, $s0, $zero

put result in $v0
Iw $s0, 0($sp)
add $t0, 4($sp)

sub $tl, 8($sp) \ Clean up (remove data
addi $sp, $sp, 12 from the stack)
ir $ra

Return control to caller

Chapter 2 — Instructions: Language of the Computer — 70

| Leaf Procedure Example

| MIPS code:

leaf _example:
addi $sp, $sp, -4
S\ $30 , 0($Sp) Save $s0 on stack
add $t0, $a0, $al
add $t1, $a2, $a3 Procedure body
sub $s0, $t0, $t1
add $v0, $s0, $zero | Resut
Iw $s0, 0($sp)
addi_$sp, $sp, 4
j r $ra Return

Restore $s0

Chapter 2 — Instructions: Language of the Computer — 71

Chapter 2 — Instructions: Language of the Computer

28 September 2015

The University of Adelaide, School of Computer Science 28 September 2015

‘ Non-Leaf Procedures
Procedures that call other procedures
For nested call, caller needs to save on the
stack:

Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 72

‘ Non-Leaf Procedure Example
C code:

int fact (int n)

if (n < 1) return T;
else return n * fact(n - 1);

}

Argument n in $a0
Result in $v0

Chapter 2 — Instructions: Language of the Computer — 73

‘ Non-Leaf Procedure Example
MIPS code:

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save return address
sw_ $a0, 0($sp) # save argument
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1
addi $v0, $zero, 1 # if so, result is 1
addi $sp, $sp, 8 # pop 2 items from stack
Jr $ra # and return

L1: addi $a0, $a0, -1 # else decrement n
jal fact # recursive call
Iw $a0, 0($sp) # restore original n
Iw $ra, 4($sp) # and return address
addi $sp, $sp, 8 # pop 2 items from stack
mul $v0, $a0, $vO # multiply to get result
Jjr Sra # and return

Chapter 2 — Instructions: Language of the Computer — 74

Chapter 2 — Instructions: Language of the Computer 7

The University of Adelaide, School of Computer Science 28 September 2015

| Local Data on the Stack

p—
| High address.

;=,‘7.4‘ $fp—-
$sp—= $5p—=

$79== [Saved argument

registers (if any)
Points to the Saved return address
1stword in the Saved saved
procedure registers (if any)
frame Local arrays and
cop | structures (if any)
Low address
a b. c.

Local data allocated by callee
e.g., C automatic variables
Procedure frame (activation record)
Used by some compilers to manage stack storage
Fixed, does not change during the function execution
A stable base register to address for local memory reference

Chapter 2 — Instructions: Language of the Computer — 75

| Memory Layout

| Text: program code
Static data: global

$sp—= TFFf FFfope,

variables Stk
e.g., static variables in C,
constant arrays and strings !
$gp initialized to address —
allowing *offsets into this 00 0000, —
segment pe—= 0040 0000y,
. Reserved

Dynamic data: heap

E.g., malloc in C, new in
Java

Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 76

| Character Data

| Byte-encoded character sets

ASCII: 128 characters
95 graphic, 33 control

Latin-1: 256 characters
ASCII, +96 more graphic characters
Unicode: 32-bit character set
Used in Java, C++ wide characters, ...
Most of the world’s alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 77

Chapter 2 — Instructions: Language of the Computer 8

The University of Adelaide, School of Computer Science 28 September 2015

| String Copy Example

| C code (naive):
Null-terminated string
void strcpy (char x[1, char y[1)
{ int i;
i=0;
while ((x[il=y[i])!'="\0")
i +=1;
}
Addresses of x, y in $a0, $a1
iin $s0

Chapter 2 — Instructions: Language of the Computer — 78

| String Copy Example
| MIPS code:
strcpy:
addi $sp, $sp, -4 # adjust stack for 1 item
sw__ $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0
L1: add $t1, $s0, $al # addr of y[i] in $tl
Ibu $t2, 0($tl) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
shb $t2, 0(5t3) # x[il = y[il
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 #i1=10+1
i L1 # next iteration of loop
L2: Iw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
Jjr Sra # and return
Chapter 2 — Instructions: Language of the Computer — 79

| 32-bit Constants

| Most constants are small
16-bit immediate is sufficient
For the occasional 32-bit constant
lui rt, constant
Copies 16-bit constant to left 16 bits of rt
Clears right 16 bits of rt to 0

Load 4,000,000 in $s0

lui $s0, 61 | 0000 0000 0011 1101 ‘0000 0000 0000 0000 ‘

ori $s0, $s0, 2304 |0000 0000 0111 1101 ‘0000 1001 0000 0000 |
Zero extended

Chapter 2 — Instructions: Language of the Computer — 80

Chapter 2 — Instructions: Language of the Computer 9

The University of Adelaide, School of Computer Science 28 September 2015

| Branching Far Away

| If branch target is too far to encode with
16-bit offset, assembler rewrites the code
Example
beq $s0,%s1, L1

bne $s0,$s1, L2
j L1
L2: ..

Chapter 2 — Instructions: Language of the Computer — 81

| Addressing Mode Summary

3. Base adchessing

o [rs | n | Aswess Momary

[
[e)| e
=

[
| Word

s
e 1O, I
 —

Chapter 2 — Instructions: Language of the Computer — 82

Chapter 2 — Instructions: Language of the Computer 10

