Floating Point

- Representation for non-integral numbers
 - Including very small and very large numbers
- Like scientific notation
 - -2.34 × 10⁵⁶ onormalized
 - +0.002 × 10⁻⁴ not normalized
- In binary
 - ±1.xxxxxxxx × 2^{yyyy}
- Types fl oat and doubl e in C

Chapter 3 — Arithmetic for Computers — 17

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits single: 23 bits double: 11 bits double: 52 bits

S Exponent

Fraction

 $x = (-1)^S \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit $(0 \Rightarrow \text{non-negative}, 1 \Rightarrow \text{negative})$
- Normalize significand: 1.0 ≤ |significand| < 2.0
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1203

Chapter 3 — Arithmetic for Computers — 19

Single-Precision Range

- Exponents 00000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = –126
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 - \Rightarrow actual exponent = 254 127 = +127
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001⇒ actual exponent = 1 1023 = -1022
 - Fraction: 000...00 ⇒ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 11111111110 ⇒ actual exponent = 2046 – 1023 = +1023
 - Fraction: 111...11 ⇒ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Chapter 3 — Arithmetic for Computers — 21

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

- Represent –0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fraction = $1000...00_2$
 - Exponent = -1 + Bias
 - Single: -1 + 127 = 126 = 011111110₂
 - Double: -1 + 1023 = 1022 = 011111111110₂
- Single: 10111111101000...00
- Double: 10111111111101000...00

Chapter 3 — Arithmetic for Computers — 23

Floating-Point Example

- What number is represented by the singleprecision float
 - 11000000101000...00
 - S = 1
 - Fraction = $01000...00_2$
 - Exponent = 10000001₂ = 129
- $x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Denormal Numbers

Exponent = 000...0 ⇒ hidden bit is 0

$$x = (-1)^S \times (0 + Fraction) \times 2^{-Bias}$$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$x = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$
Two representations of 0.0!

E(8)		cision F(23)	Double Pre E(11)	F(52)	Represents
0		0	0	0	True 0
0		Nonzero	0	Nonzero	Denormalized number
1-25	54	Anything	1-2046	Anything	Float point number
255		0	2047	0	infinity
255		nonzero	2047	nonzero	NaN

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction ≠ 000...0
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

