
Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 1

Chapter 4 — The Processor — 56

Pipelining Analogy

 Pipelined laundry: overlapping execution
 Parallelism improves performance

§4.5 A
n O

verview
 of P

ipelining Four loads:
 Speedup

= 8/3.5 = 2.3

 Non-stop:
 Speedup

= 2n/(0.5n + 1.5) ≈ 4
= number of stages

Chapter 4 — The Processor — 57

MIPS Pipeline

 Five stages, one step per stage
1. IF: Instruction fetch from memory

2. ID: Instruction decode & register read

3. EX: Execute operation or calculate address

4. MEM: Access memory operand

5. WB: Write result back to register

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 2

Chapter 4 — The Processor — 58

Pipeline Performance

 Assume time for stages is
 100ps for register read or write

 200ps for other stages

 Compare pipelined datapath with single-cycle
datapath

Instr Instr fetch Register
read

ALU op Memory
access

Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 59

Pipeline Performance
Single-cycle (Tc= 800ps)

Pipelined (Tc= 200ps)

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 3

Chapter 4 — The Processor — 60

Pipeline Speedup

 If all stages are balanced
 i.e., all take the same time

 Time between instructionspipelined

= Time between instructionsnonpipelined

Number of stages

 If not balanced, speedup is less

 Speedup due to increased throughput
 Latency (time for each instruction) does not

decrease

Chapter 4 — The Processor — 61

Pipelining and ISA Design

 MIPS ISA designed for pipelining
 All instructions are 32-bits

 Easier to fetch and decode in one cycle
 c.f. x86: 1- to 17-byte instructions

 Few and regular instruction formats
 Can decode and read registers in one step

 Load/store addressing
 Can calculate address in 3rd stage, access memory

in 4th stage

 Alignment of memory operands
 Memory access takes only one cycle

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 4

Chapter 4 — The Processor — 62

Hazards

 Situations that prevent starting the next
instruction in the next cycle

 Structure hazards
 A required resource is busy

 Data hazard
 Need to wait for previous instruction to

complete its data read/write

 Control hazard
 Deciding on control action depends on

previous instruction

Chapter 4 — The Processor — 63

Structure Hazards

 Conflict for use of a resource

 In MIPS pipeline with a single memory
 Load/store requires data access

 Instruction fetch would have to stall for that
cycle
 Would cause a pipeline “bubble”

 Hence, pipelined datapaths require
separate instruction/data memories
 Or separate instruction/data caches

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 5

Chapter 4 — The Processor — 64

Data Hazards

 An instruction depends on completion of
data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3 100 120 140 160

Chapter 4 — The Processor — 65

Data Hazards

 An instruction depends on completion of
data access by a previous instruction
 add $s0, $t0, $t1
sub $t2, $s0, $t3

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 6

Chapter 4 — The Processor — 66

Forwarding (aka Bypassing)

 Use result when it is computed
 Don’t wait for it to be stored in a register

 Requires extra connections in the datapath

Chapter 4 — The Processor — 67

Load-Use Data Hazard

 Can’t always avoid stalls by forwarding
 If value not computed when needed

 Can’t forward backward in time!

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 7

Chapter 4 — The Processor — 68

Code Scheduling to Avoid Stalls

 Reorder code to avoid use of load result in
the next instruction

 C code for A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Chapter 4 — The Processor — 69

Control Hazards

 Branch determines flow of control
 Fetching next instruction depends on branch

outcome
 Pipeline can’t always fetch correct instruction

 Still working on ID stage of branch

 In MIPS pipeline
 Need to compare registers and compute

target early in the pipeline
 Add hardware to do it in ID stage

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 8

Chapter 4 — The Processor — 70

Stall on Branch

 Wait until branch outcome determined
before fetching next instruction

Chapter 4 — The Processor — 71

Branch Prediction

 Longer pipelines can’t readily determine
branch outcome early
 Stall penalty becomes unacceptable

 Predict outcome of branch
 Only stall if prediction is wrong

 In MIPS pipeline
 Can predict branches not taken

 Fetch instruction after branch, with no delay

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 9

Chapter 4 — The Processor — 72

MIPS with Predict Not Taken

Prediction
correct

Prediction
incorrect

Chapter 4 — The Processor — 73

More-Realistic Branch Prediction

 Static branch prediction
 Based on typical branch behavior

 Example: loop and if-statement branches
 Predict backward branches taken

 Predict forward branches not taken

 Dynamic branch prediction
 Hardware measures actual branch behavior

 e.g., record recent history of each branch

 Assume future behavior will continue the trend
 When wrong, stall while re-fetching, and update history

Morgan Kaufmann Publishers 25 November, 2015

Chapter 4 — The Processor 10

Chapter 4 — The Processor — 74

Pipeline Summary

 Pipelining improves performance by
increasing instruction throughput
 Executes multiple instructions in parallel

 Each instruction has the same latency

 Subject to hazards
 Structure, data, control

 Instruction set design affects complexity of
pipeline implementation

The BIG Picture

