Morgan Kaufmann Publishers 3 November, 2015

e COMPUTER ORGANIZATION AND DESIGN /¢

The Hardware/Software Interface

| Chapter 3

| Arithmetic for Computers

| Arithmetic for Computers

| Operations on integers
Addition and subtraction
Multiplication and division
Dealing with overflow
Floating-point real numbers
Representation and operations

Chapter 3 — Arithmetic for Computers — 2

Chapter 3 — Arithmetic for Computers 1

Morgan Kaufmann Publishers

| Integer Addition

Example: 7 + 6

SiHHNN

Overflow if result out of range
Adding +ve and —ve operands, no overflow

Adding two +ve operands
Overflow if result sign is 1

Adding two —ve operands
Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 3

| Integer Subtraction

| Add negation of second operand
0000000110

Example: 7 -6 =7 + (-6) 1111111001
£7: 00000000 ...0000 0111 17ii7iioic

—6: 1111 1111 ... 1111 1010
+1: 0000 0000 ... 0000 0001
Overflow if result out of range
Subtracting two +ve or two —ve operands, no overflow
Subtracting +ve from —ve operand
Overflow if result sign is 0

Subtracting —ve from +ve operand
Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 4

Chapter 3 — Arithmetic for Computers

3 November, 2015

Morgan Kaufmann Publishers 3 November, 2015

| Dealing with Overflow

| Some languages (e.g., C) ignore overflow
Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran)
require raising an exception
Use MIPS add, addi, sub instructions

On overflow, invoke exception handler

Save PC in exception program counter (EPC)
register

Jump to predefined handler address

m¥cO (move from coprocessor reg) instruction can
retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers —5

| Arithmetic for Multimedia

| Graphics and media processing operates
on vectors of 8-bit and 16-bit data

Use 64-bit adder, with partitioned carry chain
Operate on 8x8-bit, 4x16-bit, or 2x32-bit vectors
SIMD (single-instruction, multiple-data)
Saturating operations

On overflow, result is largest representable
value

c.f. 2s-complement modulo arithmetic
E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 6

Chapter 3 — Arithmetic for Computers 3

Morgan Kaufmann Publishers

| Multiplication

| Start with long-multiplication approach

multiplicand \

1000
X 1001
1000
0000
0000
1000

—1001000

Length of product is
the sum of operand
lengths

-

-
Multiplicand
Shift left
64 bits
y
—
N .
) Multiplier
64-bit ALU Shift right

32 bits

Product

Write

| 64 bits

Chapter

3 — Arithmetic for Computers — 7

Multiplication Hardware

?

Muliplier0 = 1

1. Test

Multiplier0 = 0

Muliiplierd

1a. Add multiplicand to product and
place the result in Product register

2. Shiftthe Multiplicand register left 1 bit
3. Shift the Multiplier register right 1 bit

N No: < 32 rapetitions.

-

Multiplicand

Shift left

-

64 bits

Y

64-bit ALU

N

—

Multiplier
Shift right

32 bits

Product
Write

| 64 bits

Yes: 32 repetitions

Initially 0

Chapter 3 — Arithmetic for Computers — 8

Chapter 3 — Arithmetic for Computers

3 November, 2015

Morgan Kaufmann Publishers 3 November, 2015

| Optimized Multiplier

| Perform steps in parallel: add/shift

Multiplicand
32 bits

Y

N

32-bit ALU

—

Product Shift right
Write |
| 64 bits I

One cycle per partial-product addition
That's ok, if frequency of multiplications is low

Chapter 3 — Arithmetic for Computers — 9

| Faster Multiplier

| Uses multiple adders
Cost/performance tradeoff

lier31 » Mcand Mplier30 Mcand Mplier29 « Mcand Mplier28 « Mcand Mplierd « Mcand Mplier2 « Mcand Mplier? « Mcand Mplier0 » Mcand

— T T R =

32 bits 32 bits e 32 bits 32 bits

Can be pipelined
Several multiplication performed in parallel

Chapter 3 — Arithmetic for Computers — 10

Chapter 3 — Arithmetic for Computers 5

Morgan Kaufmann Publishers

| MIPS Multiplication

| Two 32-bit registers for product
HI: most-significant 32 bits
LO: least-significant 32-bits

Instructions

64-bit product in HI/LO
mfhi rd /7 mflo rd
Move from HI/LO to rd

mul rd, rs, rt
Least-significant 32 bits of product —> rd

mult rs, rt / multu rs, rt

Can test HI value to see if product overflows 32 bits

Chapter 3 — Arithmetic for Computers — 11

| Division
| Check for 0 divisor
Long division approach
If divisor < dividend bits
1 bit in quotient, subtract
\ 1001 Otherwise
1000)1001010 0 bit in quotient, bring down next
- / ~1000 dividend bit
10 Restoring division
101 Do the subtract, and if remainder
1010 goes < 0, add divisor back
~1000 Signed division
10 Divide using absolute values
)) . Adjust sign of quotient and remainder
n-bit operands yield n-bit as required
quotient and remainder
Chapter 3 — Arithmetic for Computers — 12

Chapter 3 — Arithmetic for Computers

3 November, 2015

Morgan Kaufmann Publishers

v

1. Subtract the Divisor register from the
Remainder register and place the

result in the Remainder register

Remainder = o/k Remainder < 0
Test i

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

2b. Restore the original value by adding
the Divisor register to the Remainder

register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the

3. Shift the Divisor register right 1 bit

new least significant bit to 0

No: < 33 repeitions

| Division Hardware

—_—

Initially divisor
in left half

/

Divisor

Shift right

64

Quotient
64-bit ALU Shift left
32 bits.
Remainder
Write
64 bits

bits

Initially dividend

Chapter 3 — Arithmetic for Computers — 13

| Optimized Divider

Divisor
_l 32 bits
N /
32-bit ALU -
- =
Shift right
Remainder Shift left
Write |
| 64 bits

One cycle per partial-remainder subtraction
Looks a lot like a multiplier!

Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 14

Chapter 3 — Arithmetic for C

omputers

3 November, 2015

Morgan Kaufmann Publishers 3 November, 2015

| Faster Division

| Can’t use parallel hardware as in multiplier
Subtraction is conditional on sign of remainder

Faster dividers (e.g. SRT devision)
generate multiple quotient bits per step
Still require multiple steps

Chapter 3 — Arithmetic for Computers — 15

| MIPS Division

| Use HI/LO registers for result
HI: 32-bit remainder
LO: 32-bit quotient
Instructions
div rs, rt / divu rs, rt

No overflow or divide-by-0 checking
Software must perform checks if required

Use mfhi, mFlo to access result

Chapter 3 — Arithmetic for Computers — 16

Chapter 3 — Arithmetic for Computers 8

