York University

Lassonde School of Engineering

Dept. of Electrical Engineering and Computer Science Fall 2015

EECS2021	Midterm	Computer Organization
Wednesday, Oct. 21st, 2015		5:30 – 6:45
Last Name _	_ First name	
ID	Solw	lion d
Instructions to students: Answer all questions. Marks are shown in front of e Show your work	ach question numb	er. \(\sum_{\text{er.}} \)
Be neat and clean while draw	ing your logic, bloo	ck, or state diagrams.

This examination consists of FIVE questions

Problem	Points	problem	Points
1	/8	2	/6
3	/4	4	/5
5	/8	6	/4
Total	/35		

Problem 1 (8 points)

Answer each of the following questions:

(a) What is the minimum two's complement number that can be represented in six bits?

100000 -- 32

(b) What is the maximum two's complement number that can be represented in six bits?

3/11/1 : 31

(c) What does 11110001 represent in unsigned format?

2+2+2+2-2 = 241

(d) What does 11110001 represent in 2's complement format

2+2+2+2-2= -15

(e) Represent the number -2 in 4 bits using 2's complement format

EECS2021

(f) represent the number 1 in 4 bits using two's complement format

(g) Add the numbers in (e) and (f) using 2's complement, show the actual addition and what is the result?

Problem 2 (6 points)

Instruction	Cycles	percentage
	4	20%
load	3	20%
store	1	30%
add/sub	10	10%
multiply	3	20%
branch	J	

a) What is the average CPI?

4(0.2)+3(0.2)+1(0.3)+10(0.1)+3(0.2)

b) A program executes 10 billion instructions, and a clock rate of 500MHz, how long to execute this program on the above machine?

10×10 ×3.3 - 660 Sec 500×106

OR 100 (4x0.2+3x0.2x.)/500 NO -66 SEC

In order to improve the design, you have two choices; the first is to reduce multiplication time to 8 cycles. The second is to reduce store time to 1 cycle, but that means you have to increase branch by 1 cycle. Which one is faster? What is the increase in the performance for the fastest solution compared to the original

CPU? (0)2 I (0)3) 4(0,2)+3(0,2)+1(0)3) THE (8(0.1)+3(0.2)

Coase II Caster by

3.3 {1.18

4(0.2)+1(0.2)+1(0.3)

+10(0.1) +4(0.2)

Problem 3 (4 points)

A given application is written in Java runs 10 seconds on a desktop processor. A new Java compiler is released that requires only 0.5 as many instructions as the old compiler. Unfortunately, it increases the CPI by 20%. What is the percentage performance increase of this application using this new compiler?

Theyore = 10 = IC × CPI × To 2015

Tafter = = 0.5 IC × 1.2 CPI · TC

= 0.6 (IC × CPI · TC)

= 0.6 (IC × CPI · TC)

= 0.6 (X 10 = 6

Typpy duents by 10 = 1.66 on 666

Problem 4 (5 points)

Consider the following piece of code.

addi \$s0, \$zero, 6

addi \$v0, \$zero, -3

add \$s1, \$s0, \$v0

beq \$s1, \$v0, Skip

sll \$s2, \$s1, 1

Skip

or \$v0, \$v0, \$s2

50=6 Vo:-3 S1=3 Not taken 52=6

Register $$s0 = \emptyset$

Register \$v0 = -1

Register \$s1 = 3

Register \$s2 = 6

1 pl. euch + 1

Vo: Vo OR SZ Vo: -3 = 2'5 Compol 000 011 11.,1111101 0R 6-52

= -1

Problem 5 (8 points)

Given the following code

Memory Address	Data Value
0x23180000	0x00000000
0x23180004	0x00000010
0x23180008	0x00001000
0x2318000C	0x00010000
0x23180010	0x00100000

Write the contents of the registers mentioned after the '#' after the execution of the instruction to the left

main:

Fill in the contents of the memory after the completion of the above code

Memory Address	Data Value D	
0x23180000	0x 0000 \ 0 0 0	
0x23180004	0x 7	
0x23180008	0x	,
0x2318000C	0x rochemen 1 T	
0x23180010	0x	

Problem 6 (4 points)

• In MIPS, there are many branch instructions beq bne, br, jr
Which of these branches has the largest reach (can jump further away than any other branch)? Briefly explain

Jr Uses 37-bit register

♦ Name 2 different special purpose registers in MIPS and mention their use

SP stack Pointer

of p Frame pointer

at Compiler

ra petern address

any 2 will do