EECS2200 Electric Circuits
Chapter 2
Activities

- (a) v=100A/V * 15mA= 1.5V.
- (b) Since this is the dependent current source, the output current i=0.25*i_{x.}
 The unit of gain is A/A.
- (c) This is a current source, we can't calculate the voltage $v_{\rm s}$ based on given information.

Solution Apply KCL to nodes a, b, c, and 1, we have: (1) $i_1 + i_c - i_{CC} = 0$ (2) $i_B + i_2 - i_1 = 0$ (3) $i_E - i_B - i_C = 0$ (4) $i_C = \beta i_B$ Apply KVL to 2 loops bcdb and badb, we have: (5) $V_0 + i_E R_E - i_2 R_2 = 0$ (6) $-i_1 R_1 + V_{CC} - i_2 R_2 = 0$

Solve Eq.(6) for i_1 and substitute i_1 into Eq. (2)

$$\begin{split} i_1 &= \frac{V_{CC} - i_2 R_2}{R_1} \\ \frac{V_{CC} - i_2 R_2}{R_1} &= i_B + i_2 \Longrightarrow i_2 = \frac{V_{CC} - i_B R_1}{R_1 + R_2} \\ \end{split}$$
Substitute i₂ to Eq.(5), solve for i_E

$$\frac{V_0 + i_E R_E}{R_2} = \frac{V_{CC} - i_B R_1}{R_1 + R_2} \Longrightarrow i_E = \left(\frac{\left(V_{CC} - i_B R_1\right) R_2}{\left(R_1 + R_2\right) R_E} - \frac{V_0}{R_E}\right)$$

Solution

Substitute $i_{\rm E}$ into Eq. (3), and use Eq.(4) to eliminate $i_{\rm c}$ in Eq.(3), we have:

$$\frac{(V_{CC} - i_B R_1) R_2}{(R_1 + R_2) R_E} - \frac{V_0}{R_E} = i_B (1 + \beta)$$

$$\therefore i_B = \frac{V_{CC} R_2 / (R_1 + R_2) - V_0}{R_1 R_2 / (R_1 + R_2) + (1 + \beta) R_E}$$