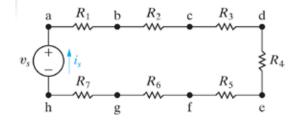
Chapter 3 Simple Resistive Circuits

Topics Covered

- Resistance in series and parallel
- Voltage and current dividers
- Measuring voltage, current, and resistance
- Delta-to-Wye (∆ to Y)

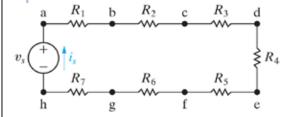
Objectives of Chapter 3

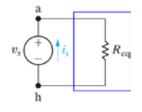

- Know how to identify components connected in series and in parallel
- Be able to find the equivalent resistance of series-connected and parallel-connected resistors
- Be able to recognize circuits where voltage division occurs and know how to use voltage division to analyze such circuits
- Be able to recognize circuits where current division occurs and know how to use current division to analyze such circuits

Resistors in series & parallel

Resistors in Series

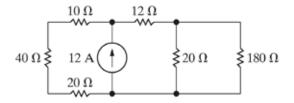
- Connected end-to-end
- Have the same current (because of KCL)
- Equivalent resistance:


$$R_{eq} = R_1 + R_2 + \dots + R_7$$



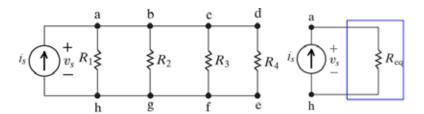
Equivalent Resistance

KVL: $-v_s + R_1 i_s + R_2 i_s + \dots + R_7 i_s = 0$ KVL: $-v_s + R_{eq} i_s = 0$ $\Rightarrow v_s = (R_1 + R_2 + \dots + R_7) i_s$ $\Rightarrow v_s = (R_{eq}) i_s$



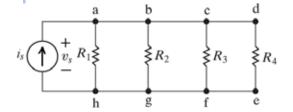
Resistors in series add: $R_{eq} = (R_1 + R_2 + \cdots + R_7)$

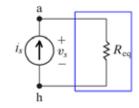
Activity 1


- (1) Which of the resistors in the circuit below are connected in series?
- (2) Find the equivalent resistance of the seriesconnected resistors.

Resistors in Parallel

- Connected at both ends
- Have the same voltage (because of KVL)

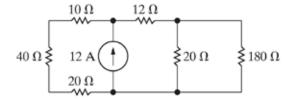

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}$$
 (use conductance)

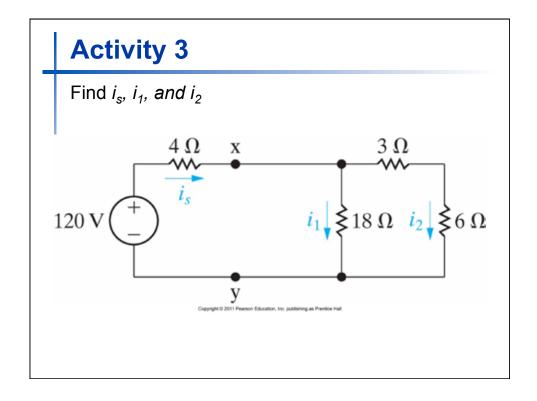


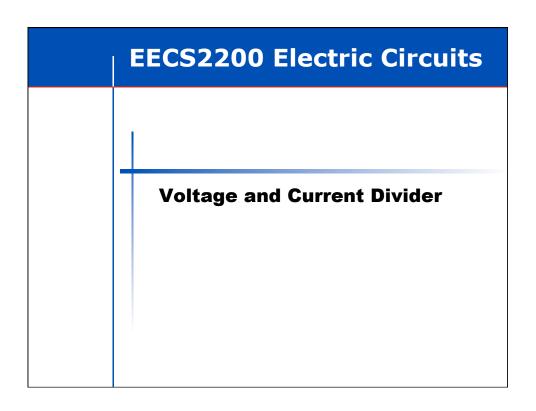
Equivalent Resistance

KCL:
$$-i_s + v_s/R_1 + v_s/R_2 + \dots + v_s/R_4 = 0$$
 KCL: $-i_s + v_s/R_{eq} = 0$

$$\Rightarrow i_s = (1/R_1 + 1/R_2 + \dots + 1/R_4)v_s \Rightarrow i_s = v_s/(R_{eq})$$



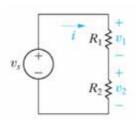



Resistors in parallel: $1/R_{eq} = (1/R_1 + 1/R_2 + \cdots + 1/R_4)$

Activity 2

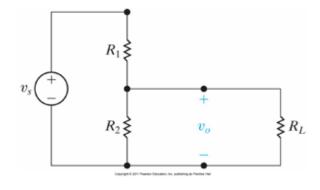
- (1) Which of the resistors in the circuit below are connected in parallel?
- (2) Find the equivalent resistance of the parallelconnected resistors.

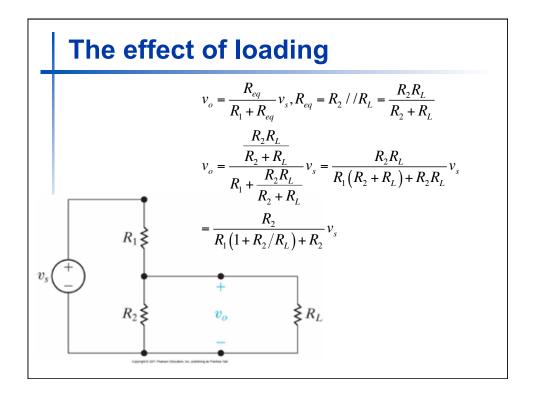
Voltage Divider

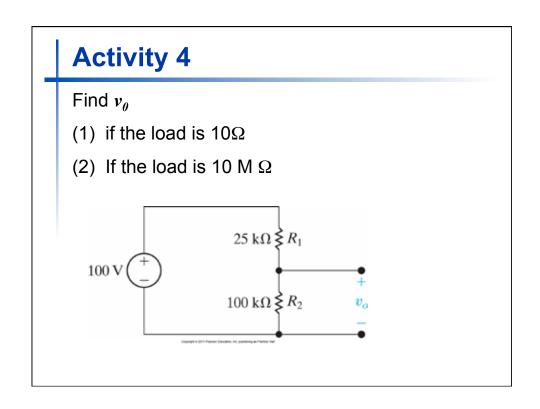

- Get more than one voltage level from a single voltage supply
- What is v_1 and v_2 relative to v_s ?

$$v_s = iR_1 + iR_2$$

$$i = \frac{v_s}{R_1 + R_2}$$

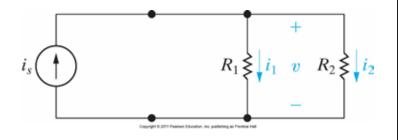

$$v_1 = iR_1 = \frac{v_s}{R_1 + R_2} R_1 = \frac{R_1}{R_1 + R_2} v_s$$


$$v_2 = iR_2 = \frac{v_s}{R_1 + R_2} R_2 = \frac{R_2}{R_1 + R_2} v_s$$

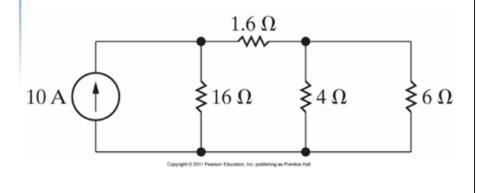


The effect of loading

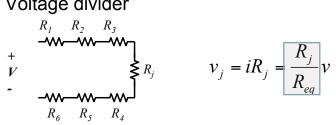
- A load on any circuit consists of one or more circuit elements that draw power from the circuit.
- R₁ is a load in below circuit.



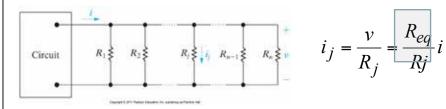
Current Divider


Divide i_s between R₁ and R₂

$$v = i_1 R_1 = i_2 R_2 = \frac{R_1 R_2}{R_1 + R_2} i_s$$
$$i_1 = \frac{R_2}{R_1 + R_2} i_s, i_2 = \frac{R_1}{R_1 + R_2} i_s$$


Activity 5

Find the power dissipated in the 6 Ω resistor.


Voltage and Current Dividers

Voltage divider

$$v_j = iR_j = \frac{R_j}{R_{eq}}v$$

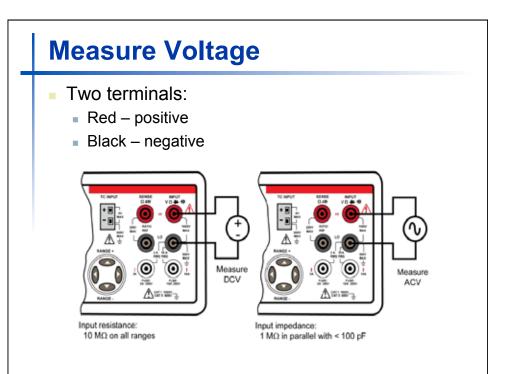
Current divider

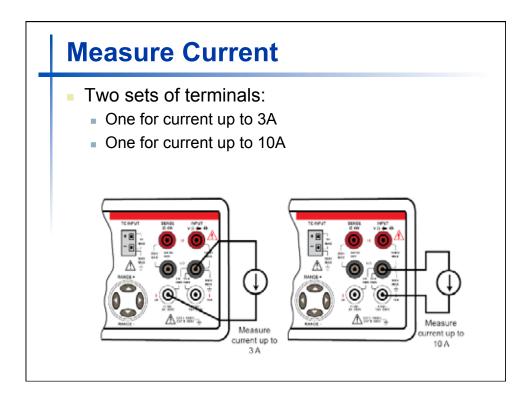
$$i_j = \frac{v}{R_j} = \frac{R_{eq}}{R_j} i$$

EECS2200 Electric Circuits

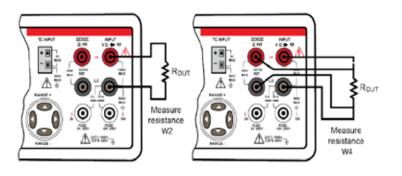
Measuring Voltage and Current

Measuring Voltage and Current


- Voltmeter is an instrument to measure voltage across a load
 - In parallel with the load
 - Ideal resistance of ∞
- Ammeter is an instrument to measure current in a load
 - In series with the load
 - Ideal resistance of 0

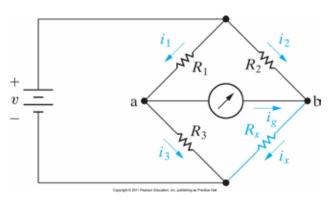

Digital Multi-meter

 Digital multi-meter is used to measure voltage, current, resistance, etc.

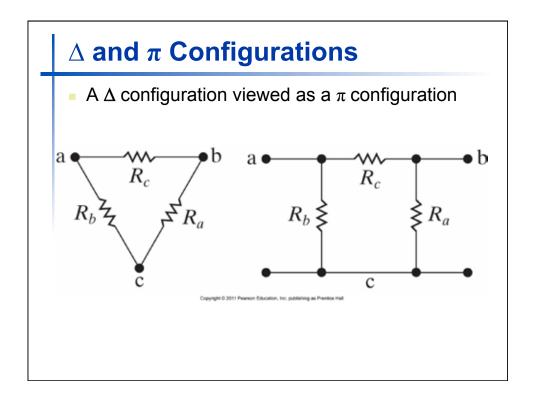


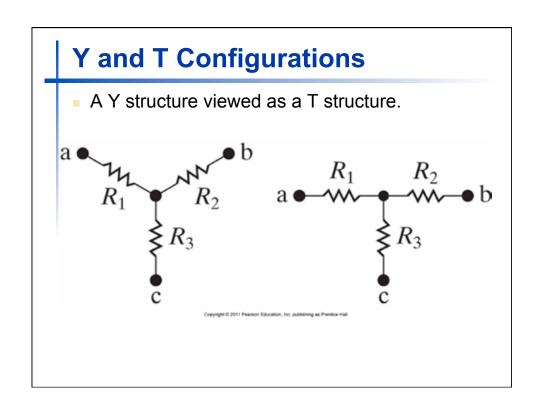
Measure Resistance

- Two methods
 - Two wires for resistance > 100Ω
 - Four wires for resistance < 100Ω</p>
 - More info: http://www.keithley.com/data?asset=57571


Wheatstone Bridge Circuit.

- For measuring resistance
- Adjust variable resistor R₃ until there is no current in the current meter, we have:


$$R_x = \frac{R_2}{R_1} R_3$$


Activity 6

Find Rx in a balanced Wheatstone bridge (i_g = 0). Assume R₁, R₂, and R₃ are known.

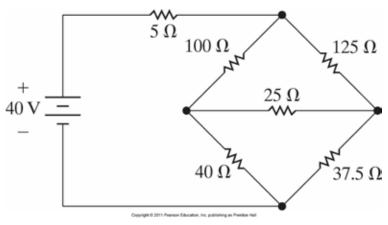
EECS2200 Electric Circuits $\Delta \text{ to Y } (\pi \text{ to T}) \text{ Conversion}$

Δ -to-Y (π -to-T) transformation

$$R_{a} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{1}}, \qquad R_{1} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}},$$

$$R_{b} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{2}}, \qquad R_{2} = \frac{R_{c}R_{a}}{R_{a} + R_{b} + R_{c}},$$

$$R_{c} = \frac{R_{1}R_{2} + R_{2}R_{3} + R_{3}R_{1}}{R_{3}} \qquad R_{3} = \frac{R_{a}R_{b}}{R_{a} + R_{b} + R_{c}}$$


$$R_{b} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}},$$

$$R_{c} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}},$$

$$R_{d} = \frac{R_{b}R_{c}}{R_{a} + R_{b} + R_{c}},$$

Activity 7

Find the current and power supplied by the 40V source .

