EECS2200 Electric Circuits

Chapter 6

RLC Circuit

Natural and Step Responses

Objectives

Determine the response form of the circuit

- Natural response parallel RLC circuits
- Natural response series RLC circuits
- Step response of parallel and series RLC circuits

EECS2200 Electric Circuits

Natural Response of Parallel RLC Circuits

Steps in Solving RLC Circuits

The first step is to write either KVL or KCL for the circuit.
Take the derivative to remove any integration
Solve the resulting differential equation

Natural Response of Parallel RLC Circuits

The problem - given initial energy stored in the inductor and/or capacitor, find $v(t)$ for $t \geq 0$.

Activity 1

It is convenient to calculate $v(t)$ for this circuit because:
A. The voltage must be continuous for all time.
B. The voltage is the same for all three components.
C. Once we have the voltage, it is pretty easy to calculate the branch current.
D. All of the above.

Natural Response of Parallel RLC Circuits

$\mathrm{KCL}: \quad C \frac{d v(t)}{d t}+\frac{1}{L} \int_{0}^{t} v(x) d x+I_{0}+\frac{v(t)}{R}=0$
Differentiate both sides to remove the integral:
$C \frac{d^{2} v(t)}{d t^{2}}+\frac{1}{L} v(t)+\frac{1}{R} \frac{d v(t)}{d t}=0$

Divide both sides by C to place in standard form:
$\frac{d^{2} v(t)}{d t^{2}}+\frac{1}{L C} v(t)+\frac{1}{R C} \frac{d v(t)}{d t}=0$

Natural Response of Parallel RLC Circuits

The problem - given initial energy stored in the inductor and/or capacitor, find $v(t)$ for $t \geq 0$.

Describing equation: $\quad \frac{d^{2} v(t)}{d t^{2}}+\frac{1}{L C} v(t)+\frac{1}{R C} \frac{d v(t)}{d t}=0$
This equation is
\checkmark Second order
\checkmark Homogeneous
\checkmark Ordinary differential equation
\checkmark With constant coefficients

Natural Response of Parallel RLC Circuits

Describing equation: $\quad \frac{d^{2} v(t)}{d t^{2}}+\frac{1}{L C} v(t)+\frac{1}{R C} \frac{d v(t)}{d t}=0$
The circuit has two initial conditions that must be satisfied, so the solution for $v(t)$ must have two constants. Use

$$
\begin{aligned}
& v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \mathrm{~V} ; \quad \text { Substitute: } \\
& \left(s_{1}^{2} A_{1} e^{s_{1} t}+s_{2}^{2} A_{2} e^{s_{2} t}\right)+\frac{1}{R C}\left(s_{1} A_{1} e^{s_{1} t}+s_{2} A_{2} e^{s_{2} t}\right)+\frac{1}{L C}\left(A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}\right)=0 \\
& \Rightarrow\left[s_{1}^{2}+(1 / R C) s_{1}+(1 / L C)\right] A_{1} e^{s_{1} t}+\left[s_{2}^{2}+(1 / R C) s_{2}+(1 / L C)\right] A_{2} e^{s_{2} t}=0
\end{aligned}
$$

For solution, either $A_{1}=0$ and $A_{2}=0$ or the quadratic part is 0 . The quadratic part is called Characteristic equation:

$$
s^{2}+(1 / R C) s+(1 / L C)=0
$$

Natural Response of Parallel RLC Circuits

The two solutions to the characteristic equation s_{1} and s_{2} can be calculated using the quadratic formula:
$s^{2}+\left(\frac{1}{R S}\right) s+\left(\frac{1}{L C}\right)=0 ;$
$s_{1,2}=-\left(\frac{1}{2 R C}\right) \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\left(\frac{1}{L C}\right)}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
where $\quad \alpha=\frac{1}{2 R C}$ (the neper frequency in $\mathrm{rad} / \mathrm{s}$)
and $\quad \omega_{0}=\sqrt{\frac{1}{L C}}$ (the resonant radian frequency in $\mathrm{rad} / \mathrm{s}$)

Parallel RLC Circuits

$s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}}$
$s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
$\alpha=\frac{1}{2 R C} \mathrm{rad} / \mathrm{s}, \quad \omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s}$

Neper frequency radian frequency

Damping ratio

Solution to Parallel RLC Circuits

$$
v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

The solution of the differential equation depends on the values of s_{1} and s_{2}, A_{1} and A_{2}.
s_{1} and s_{2} can be found from the characteristic equation, consider three cases

Case 1-Overdamping

$\alpha>\omega_{0}, \xi>1 \rightarrow 2$ real roots

$$
\begin{array}{ll}
s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}} & s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}} \\
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}} & s_{1,2}=-\xi \omega_{0} \pm \omega_{0} \sqrt{\xi^{2}-1} \\
\alpha=\frac{1}{2 R C} \mathrm{rad} / \mathrm{s}, \quad \omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s} & \omega_{0}=\frac{1}{\sqrt{L C}}, \xi=\frac{1}{2 R} \sqrt{\frac{L}{C}}
\end{array}
$$

$$
v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

Case 2: Underdamping

$\alpha<\omega_{0}, \zeta<1 \rightarrow$ a pair of complex roots
$s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}}$
$s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}}$
$s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
$\alpha=\frac{1}{2 R C} \mathrm{rad} / \mathrm{s}, \quad \omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s}$
$s_{1,2}=-\xi \omega_{0} \pm \omega_{0} \sqrt{\xi^{2}-1}$
$\omega_{0}=\frac{1}{\sqrt{L C}} \quad, \quad \xi=\frac{1}{2 R} \sqrt{\frac{L}{C}}$
$S=-\alpha \pm j \omega_{d} \quad \omega_{d}=\sqrt{\omega_{0}^{2}-\alpha}$
$v(t)=B_{1} e^{-\alpha t} \cos \left(\omega_{d} t\right)+B_{2} e^{-\alpha t} \sin \left(\omega_{d} t\right)$

Case 3: Critical Damping

$\alpha=\omega_{0}, \zeta=1 \rightarrow 2$ equal roots

$$
\begin{aligned}
s_{1,2}= & -\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}} \\
& s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}} \\
s_{1,2}= & -\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}} \\
\alpha= & \frac{1}{2 R C} \mathrm{rad} / \mathrm{s}, \quad \omega_{0}=\frac{1}{\sqrt{L C}} \mathrm{rad} / \mathrm{s} \\
& \omega_{0}=-\frac{1}{\sqrt{L C}}, \quad \xi \omega_{0} \pm \omega_{0} \sqrt{\xi^{2}-1} \\
& s_{1}=s_{1}=-\alpha \\
& v(t)=D_{1} t e^{-\alpha t}+D_{2} e^{-\alpha t}
\end{aligned}
$$

Solution to Parallel RLC Circuits

$$
\begin{array}{ll}
v(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} & \text { Overdamped } \\
v(t)=B_{1} e^{-\alpha t} \cos \omega_{d} t+B_{2} e^{-\alpha t} \sin \omega_{d} t & \text { Underdamped } \\
v(t)=D_{1} t e^{-\alpha t}+D_{2} e^{-\alpha t} & \text { Critically damped }
\end{array}
$$

Determine the Coefficients

We can calculate them from the initial conditions
Keep in mind voltage across a capacitor and current in an inductor can not change instantaneously

$$
\begin{aligned}
& v_{C}\left(0^{-}\right)=v_{C}(0)=v_{C}\left(0^{+}\right) \\
& i_{L}\left(0^{-}\right)=i_{L}(0)=i_{L}\left(0^{+}\right)
\end{aligned}
$$

Activity 2

Given $v\left(0^{+}\right)=12 V$ and $\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=30 \mathrm{~mA}$,
Find $v(t)$ for $t>=0$.

Solution

Step 1: determine the solution form.
Given $R=200 \Omega, C=0.2 \mu F, L=50 \mathrm{mH}$
$\alpha=\frac{1}{2 R C}=\frac{1}{2 \times 200 \times 0.2 \times 10^{-6}}=0.0125 \times 10^{6} \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{50 \times 10^{-3} \times 0.2 \times 10^{-6}}}=10^{4} \mathrm{rad} / \mathrm{s}$
$\alpha>\omega_{0} \quad$ overdamped
$s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-1.25 \times 10^{4} \pm \sqrt{1.5625-1} \times 10^{4}$
$s_{1}=-12500+7500=-5000 \mathrm{rad} / \mathrm{s}$
$s_{2}=-12500-7500=-20000 \mathrm{rad} / \mathrm{s}$
$\therefore v(t)=A_{1} e^{-5000 t}+A_{2} e^{-20000 t} V$

Solution

Step 2, find A_{1} and A_{2}

Given $v\left(0^{+}\right)=12 \mathrm{~V}, i_{L}\left(0^{+}\right)=30 \mathrm{~mA}$
and $v(t)=A_{1} e^{-5,000 t}+A_{2} e^{-20,000 t}$
$v\left(0^{+}\right)=12=A_{1}+A_{2}$
$\mathrm{KCL}: i_{C}\left(0^{+}\right)=-i_{R}\left(0^{+}\right)-i_{L}\left(0^{+}\right)$, also $i_{C}\left(0^{+}\right)=C \frac{d v\left(0^{+}\right)}{d t}$
$C \frac{d v\left(0^{+}\right)}{d t}=-\frac{V_{0}}{R}-i_{L}\left(0^{+}\right)$
$\frac{d v\left(0^{+}\right)}{d t}=-\frac{V_{0}}{C R}-\frac{i_{L}\left(0^{+}\right)}{C}=-\frac{12}{0.2 \times 10^{-6} \times 200}-\frac{30 \times 10^{-3}}{0.2 \times 10^{-6}}$
$=-0.3 \times 10^{6}-0.15 \times 10^{6}=-0.45 \times 10^{6} \mathrm{~V} / \mathrm{s}$
$\frac{d v\left(0^{+}\right)}{d t}=-450,000=-5000 A_{1}-20,000 A_{2}$

Solution

Solve for equations (1) and (2),
$A_{1}=-14 \mathrm{~V}$ and $\mathrm{A}_{2}=26 \mathrm{~V}$
$\therefore v(t)=-14 e^{-5,000 t}+26 e^{-20,000 t} V, \quad t \geq 0$

Activity 3

Given $\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{I}_{0}=-12.25 \mathrm{~mA}$,
Find $v(t)$ for $t>=0$.

Solution

Step 1: determine the solution form.
Given $R=20 k \Omega, C=0.125 \mu F, L=8 H$
$\alpha=\frac{1}{2 R C}=\frac{1}{2 \times 20 \times 10^{3} \times 0.125 \times 10^{-6}}=200 \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{8 \times 0.125 \times 10^{-6}}}=10^{3} \mathrm{rad} / \mathrm{s}$
$\alpha<\omega_{0} \quad$ underdamped
$\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}=\sqrt{10^{6}-4 \times 10^{4}}=979.80 \mathrm{rad} / \mathrm{s}$
$s_{1}=-\alpha+j \omega_{d}=-200+j 979.80 \mathrm{rad} / \mathrm{s}$
$s_{2}=-\alpha-j \omega_{d}=-200-j 979.80 \mathrm{rad} / \mathrm{s}$
$v(t)=B_{1} e^{-200 t} \cos (979.80 t)+B_{2} e^{-200 t} \sin (979.80 t)$

Solution

Step 2, find B_{1} and B_{2}
Given $v_{0}=v\left(0^{+}\right)=0 \mathrm{~V}, i_{\mathrm{R}}=0 \rightarrow i_{C}\left(0^{+}\right)=-I_{0}=12.25 \mathrm{~mA}$
and $v(t)=B_{1} e^{-200 t} \cos (979.80 t)+B_{2} e^{-200 t} \sin (979.80 t)$
$v\left(0^{+}\right)=B_{1}=0$
$\operatorname{KCL}: i_{C}\left(0^{+}\right)=-i_{R}\left(0^{+}\right)-i_{L}\left(0^{+}\right)$, also $i_{C}\left(0^{+}\right)=C \frac{d v\left(0^{+}\right)}{d t}$
$\frac{d v\left(0^{+}\right)}{d t}=\frac{i_{L}\left(0^{+}\right)}{C}=\frac{12.25 \times 10^{-3}}{0.125 \times 10^{-6}}=98000 \mathrm{~V} / \mathrm{s}$
$B_{2}=\frac{d v\left(0^{+}\right)}{d t} / \omega_{d}=\frac{98000}{979.80} \approx 100 \mathrm{~V}$

Solution

Solve for equations (1) and (2),
$B_{1}=0 \mathrm{~V}$ and $\mathrm{B}_{2}=100 \mathrm{~V}$

$$
v(t)=100 e^{-200 t} \sin (979.80 t) V \quad t \geq 0
$$

Activity 4

In Activity 4, what is the value of R that results in a critically damped voltage response?
Find $v(t)$ for $t>=0$.

Solution

Step 1: determine the solution form.
Given $\mathrm{C}=0.125 \mu \mathrm{~F}, \mathrm{~L}=8 \mathrm{H}$
$\because \omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{8 \times 0.125 \times 10^{-6}}}=10^{3} \mathrm{rad} / \mathrm{s}$
$\therefore \alpha=\omega_{0}=10^{3}=\frac{1}{2 R C} \Rightarrow R=\frac{1}{2 \times 10^{3} \times 0.125 \times 10^{-6}}=4 \mathrm{k} \Omega$
$\therefore v(t)=D_{1} t e^{-\alpha t}+D_{2} e^{-\alpha t}$

Solution

Step 2, find D_{1} and D_{2}
Given $v_{0}=v\left(0^{+}\right)=0 \mathrm{~V}, \mathrm{~d} v\left(0^{+}\right) / \mathrm{d} t=98000 \mathrm{~V} / \mathrm{s}$
and $v(t)=D_{1} t e^{-a t}+D_{2} e^{-a t}$
$v\left(0^{+}\right)=D_{2}=0$
$\frac{d v(t)}{d t}=D_{1} e^{-\alpha t}+D_{1} t \frac{e^{-\alpha t}}{-\alpha}$
$\frac{d \nu\left(0^{+}\right)}{d t}=D_{1}=98000 \mathrm{~V}$
$\therefore v(t)=98000 t e^{-1000 t} V \quad t \geq 0$

EECS2200 Electric Circuits

Natural Response of Series

 RLC Circuits
Series and Parallel RLC Circuits

- The difference(s) between the analysis of series RLC circuit and the parallel RLC circuit is/are:
A. The variable we calculate.
B. The describing differential equation.
C. The equations for satisfying the initial conditions

Natural Response of Series RLC Circuits

The problem - given initial energy stored in the inductor and/or capacitor, find $i(t)$ for $t \geq$ 0 .

KVL: $\quad L \frac{d i(t)}{d t}+\frac{1}{C} \int_{0}^{t} i(x) d x+V_{0}+R i(t)=0$
Differentiate both sides to remove the integral:

$$
L \frac{d^{2} i(t)}{d t^{2}}+\frac{1}{C} i(t)+R \frac{d i(t)}{d t}=0
$$

Divide both sides by L to place in standard form:

$$
\frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=0
$$

Activity 5

The describing differential equation for the series RLC circuit is

$$
\frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=0
$$

Therefore, the characteristic equation is
A. $s^{2}+(1 / R C) s+1 / L C=0$
B. $s^{2}+(R / L) s+1 / L C=0$
C. $s^{2}+(1 / L C) s+1 / R C=0$

Natural Response of Series RLC Circuits

The two solutions to the characteristic equation can be calculated using the quadratic formula:
$s^{2}+(R / L) s+(1 / L C)=0$
$s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
$\alpha=\frac{R}{2 L}$ (the neper frequency in $\mathrm{rad} / \mathrm{s}$)
$\omega_{0}=\sqrt{\frac{1}{L C}}$ (the resonant radian frequency in $\mathrm{rad} / \mathrm{s}$)

Natural Response of Series RLC Circuits

The solution are in the same form as in the parallel RLC circuits:

$$
\begin{array}{ll}
i(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} & \text { Overdamped } \\
i(t)=B_{1} e^{-\alpha t} \cos \omega_{d} t+B_{2} e^{-\alpha t} \sin \omega_{d} t & \text { Underdamped } \\
i(t)=D_{1} t e^{-\alpha t}+D_{2} e^{-\alpha t} & \text { Critically damped }
\end{array}
$$

Activity 6

The capacitor is charged to 100 V and at $\mathrm{t}=0$, the switch closes. Find $i(t)$ for $t \geq 0$.

Solution

$\alpha=\frac{R}{2 L}=\frac{560}{2(0.1)}=2800 \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\sqrt{\frac{1}{L C}}=\sqrt{\frac{1}{(0.1)(0.1 \mu)}}=10,000 \mathrm{rad} / \mathrm{s}$
$\alpha^{2}<\omega_{o}^{2}$ so this is the underdamped case!
$\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}=9600 \mathrm{rad} / \mathrm{s}$
$i(t)=B_{1} e^{-2800 t} \cos 9600 t+B_{2} e^{-2800 t} \sin 9600 t \mathrm{~A}, t \geq 0$

Solution

$i(t)=B_{1} e^{-2800 t} \cos 9600 t+B_{2} e^{-2800 t} \sin 9600 t \mathrm{~A}, t \geq 0$
Now we must use the coefficients in the equation to satisfy
the initial conditions in the circuit :

$$
\begin{aligned}
& \left.i(t)\right|_{t=0} \text { in the equation }=\left.i(t)\right|_{t=0} \text { in the circuit } \\
& \left.\frac{d i(t)}{d t}\right|_{t=0} \text { in the equation }=\left.\frac{d i(t)}{d t}\right|_{t=0} \text { in the circuit }
\end{aligned}
$$

Solution

$i(t)=B_{1} e^{-2800 t} \cos 9600 t+B_{2} e^{-2800 t} \sin 9600 t \mathrm{~A}, t \geq 0$
Equation: $\quad i(0)=B_{1}$ (same as the parallel case!)
Circuit: $\quad i(0)=I_{0}=0$

$$
\Rightarrow \quad B_{1}=0
$$

Solution

Equation: $\quad \frac{d i\left(0^{+}\right)}{d t}=-\alpha B_{1}+\omega_{d} B_{2}$ (same as the parallel case!)
Circuit: $\quad L \frac{d i\left(0^{+}\right)}{d t}=V_{0} \Rightarrow \frac{d i\left(0^{+}\right)}{d t}=\frac{V_{0}}{L}=\frac{100}{100 \times 10^{-3}}=1000 \mathrm{~A} / \mathrm{s}$
$\because \quad B_{1}=0 \quad \Rightarrow \quad \frac{d i\left(0^{+}\right)}{d t}=\omega_{d} B_{2}=9600 B_{2}=1000 \quad \Rightarrow B_{2}=0.104$
$\therefore i(t)=0.104 e^{-2800 t} \sin 9600 t \mathrm{~A}, t \geq 0$

EECS2200 Electric Circuits

Step Response of RLC Circuits

Step Response of RLC Circuit

$$
\begin{aligned}
& v_{L}+v_{C}+v_{R}=V \\
& L \frac{d i}{d t}+v_{c}+i R=V \\
& i=C \frac{d v_{C}}{d t} \\
& L C \frac{d^{2} v_{C}}{d t^{2}}+v_{C}+R C \frac{d v_{C}}{d t}=V \\
& \frac{d^{2} v_{C}}{d t^{2}}+\frac{R}{L} \frac{d v_{C}}{d t}+\frac{v_{C}}{L C}=\frac{I}{L C}
\end{aligned}
$$

$$
\begin{aligned}
& i_{L}+i_{C}+i_{R}=I \\
& i_{L}+C \frac{d v}{d t}+\frac{v}{R}=I \\
& v=L \frac{d i_{L}}{d t} \\
& L C \frac{d^{2} i_{L}}{d t}+\frac{L}{R} \frac{d i_{L}}{d t}+i_{L}=I \\
& \frac{d^{2} i_{L}}{d t}+\frac{1}{R C} \frac{d i_{L}}{d t}+\frac{i_{L}}{L C}=\frac{I}{L C}
\end{aligned}
$$

Step Response of RLC Circuits

A topic for a course in Math.
Generally speaking, the solution of a secondorder DE with a constant driving force equals the forced response plus the a response function identical to the natural response.
$i=I_{f}+\left\{\begin{array}{l}\text { function of the same form } \\ \text { as natural response }\end{array}\right\}$
$v=V_{f}+\left\{\begin{array}{l}\text { function of the same form } \\ \text { as natural response }\end{array}\right\}$
I_{f} or V_{f} is the non-zero final value.

EECS2200 Electric Circuits

Step Response for Parallel RLC Circuits

Step Response of a Parallel	RLC Circuit
$i_{L}(t)=I_{f}+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}$	Overdamped
$i_{L}(t)=I_{f}+B_{1} e^{-\alpha t} \cos \omega_{d} t+B_{2} e^{-\alpha t} \sin \omega_{d} t$	Underdamped
$i_{L}(t)=I_{f}+D_{1} t e^{-\alpha t}+D_{2} e^{-\alpha t}$	Critically damped

Step Response of RLC Circuit

As $t \rightarrow \infty$:

The only component whose final value is NOT zero is the inductor, whose final current is the current supplied by the source.

Activity 7

There is no initial energy stored in this circuit; find $i(t)$ for $t \geq 0$.

Solution

The problem - there is no initial energy stored in this circuit; find $i(t)$ for $t \geq 0$.

To begin, find the initial conditions and the final value. The initial conditions for this problem are both zero; the final value is found by analyzing the circuit as $t \rightarrow \infty$.

Solution

The problem - there is no initial energy stored in this circuit; find $i(t)$ for $t \geq 0$.

$t \rightarrow \infty$:

$$
I_{F}=24 \mathrm{~mA}
$$

Solution

Next, calculate the values of α and ω_{0} and determine the form of the response:
$\alpha=\frac{1}{2 R C}=\frac{1}{2(400)(25 \mathrm{n})}=50,000 \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\sqrt{1 / L C}=\sqrt{1 /(25 \mathrm{~m})(25 \mathrm{n})}=40,000 \mathrm{rad} / \mathrm{s}$
Overdamped

Solution

Since the response form is overdamped, calculate the values of s_{1} and s_{2} :

$$
\begin{array}{ll}
s_{1,2}= & -\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-50,000 \pm \sqrt{50,000^{2}-40,000^{2}} \\
& =-50,000 \pm 30,000 \mathrm{rad} / \mathrm{s} \\
\therefore & s_{1}=-20,000 \mathrm{rad} / \mathrm{s} \text { and } s_{2}=-80,000 \mathrm{rad} / \mathrm{s} \\
\Rightarrow \quad i_{L}(t)=0.024+A_{1} e^{-20,000 t}+A_{2} e^{-80,000 t} \mathrm{~A}, t \geq 0
\end{array}
$$

Solution

$$
i_{L}(t)=0.024+A_{1} e^{-20,000 t}+A_{2} e^{-80,000 t} \mathrm{~A}, t \geq 0
$$

Next, set the values of $i(0)$ and $d i(0) / d t$ from the equation equal to the values of $i(0)$ and $\mathrm{di}(0) / \mathrm{dt}$ from the circuit.
From the equation: $\quad i_{L}(0)=0.024+A_{1}+A_{2}$
From the circuit: $\quad i_{L}(0)=I_{0}=0$
From the equation: $\quad \frac{d i_{L}(0)}{d t}=-20,000 A_{1}-80,000 A_{2}$
From the circuit : $\quad \frac{d i_{L}(0)}{d t}=\frac{v_{L}(0)}{L}=\frac{V_{0}}{L}=0$

Solution

Solve: $\quad 0.024+A_{1}+A_{2}=0$
and $\quad-20,000 A_{1}-80,000 A_{2}=0$
$\therefore \quad A_{1}=-32 \mathrm{~mA} ; \quad A_{2}=8 \mathrm{~mA}$
$\Rightarrow \quad i_{L}(t)=24-32 e^{-20,000 t}+8 e^{-80,000 t} \mathrm{~mA}, t \geq 0$

Activity 8

If the resistor value is changed to 625Ω, find $i(t)$ for $t \geq 0$.

Solution

$\because R=625 \Omega, C=25 n F$,
$\alpha=\frac{1}{2 R C}=\frac{1}{2(625)(25 \mathrm{n})}=32,000 \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\sqrt{1 / L C}=\sqrt{1 /(25 \mathrm{~m})(25 \mathrm{n})}=40,000 \mathrm{rad} / \mathrm{s}$
$\alpha<\omega_{0} \Rightarrow$ Underdamped
$\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}=\sqrt{(16-10.24) \times 10^{8}}=24000 \mathrm{rad} / \mathrm{s}$
$s_{1}=-32000+j 24000 \mathrm{rad} / \mathrm{s}$
$s_{2}=-32000-j 24000 \mathrm{rad} / \mathrm{s}$
$i_{L}(t)=I_{f}+B_{1} e^{-32000 t} \cos (24000 t)+B_{2} e^{-32000 t} \sin (24000 t)$

Solution

Next, set the values of $i(0)$ and $d i(0) / d t$ from the equation equal to the values of $i(0)$ and $\mathrm{di}(0) / \mathrm{dt}$ from the circuit.

$$
\begin{aligned}
i_{L}(0) & =0.024+B_{1}=0 \\
\frac{d i_{L}(0)}{d t} & =\omega_{d} B_{2}-\alpha B_{1}=0 \\
B_{1} & =-24 m A, B_{2}=32 m A \\
i_{L}(t) & =24-24 e^{-32000 t} \cos (24000 t) \\
& -32 e^{-32000 t} \sin (24000 t) m A \quad t \geq 0
\end{aligned}
$$

Activity 9

If the resistor value in is changed to 500Ω, find $i(t)$ for $t \geq 0$.

Solution

$\because R=500 \Omega, C=25 n F$,
$\alpha=\frac{1}{2 R C}=\frac{1}{2(500)(25 \mathrm{n})}=40,000 \mathrm{rad} / \mathrm{s}$
$\omega_{0}=\sqrt{1 / L C}=\sqrt{1 /(25 \mathrm{~m})(25 \mathrm{n})}=40,000 \mathrm{rad} / \mathrm{s}$
$\alpha=\omega_{0} \Rightarrow$ Critically damped
$s_{1}=s_{2}=-\alpha=-40000 \mathrm{rad} / \mathrm{s}$
$i_{L}(t)=I_{f}+D_{1} t e^{-40000 t}+D_{2} e^{-40000 t}$

Solution

Next, set the values of $i(0)$ and $d i(0) / d t$ from the equation equal to the values of $i(0)$ and $\mathrm{di}(0) / \mathrm{dt}$ from the circuit.
$i_{L}(0)=0.024+D_{2}=0$
$\frac{d i_{L}(0)}{d t}=D_{1}-\alpha D_{2}=0$
$D_{1}=-960000 \mathrm{~mA} / \mathrm{s}, D_{2}=-24 m A$
$i_{L}(t)=24-960000 t e^{-40000 t}-24 e^{-40000 t} m A \quad t \geq 0$

Plot Responses of 3 Cases

The overdamped, underdamped, and critically damped responses of Activities 7-9 are given below:

Overdamped:
$i_{L}(t)=24-32 e^{-20,000 t}+8 e^{-80,000 t} \mathrm{~mA}, t \geq 0$
Underdamped:
$i_{L}(t)=24-24 e^{-32000 t} \cos (24000 t)$
$-32 e^{-32000 t} \sin (24000 t) m A, t \geq 0$
Critically damped:
$i_{L}(t)=24-960000 t e^{-40000 t}-24 e^{-40000 t} m A, \quad t \geq 0$

EECS2200 Electric Circuits

Step Response for Series RLC Circuits

$\left|\begin{array}{lc}\text { Step Response of a Series RLC Circuit } \\ v_{c}=V_{f}+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} & \text { Overdamped } \\ v_{c}=V_{f}+B_{1} e^{-\alpha t} \cos \omega_{d} t+B_{2} e^{-\alpha t} \sin \omega_{d} t & \text { Underdamped } \\ v_{c}=V_{f}+D_{1} t e^{-\alpha t}+D_{2} e^{-\alpha t} & \text { Critically damped }\end{array}\right|$

Step Response for Series RLC Circuit

The problem find $v_{C}(t)$ for $t \geq 0$.

Find the initial conditions by analyzing the circuit for t <0 :

Step Response for Series RLC Circuit

Find the final value of the capacitor voltage by analyzing the circuit as $t \rightarrow \infty$:

$$
V_{F}=100 \mathrm{~V}
$$

Step Response for Series RLC Circuit

Use the circuit for $t \geq 0$ to find the values of α and ω_{0} :

$$
\begin{aligned}
& \alpha=R / 2 L=80 / 2(0.005)=8000 \mathrm{rad} / \mathrm{s} \\
& \begin{aligned}
\omega_{0}= & \sqrt{1 / L C}=\sqrt{1 /(0.005)(2 \mu)} \\
& =10,000 \mathrm{rad} / \mathrm{s}
\end{aligned} \\
& \begin{array}{c}
\alpha^{2}< \\
\omega_{0}^{2} \quad \Rightarrow \quad \text { underdamped } \\
\omega_{d}= \\
\\
\\
= \\
=6000 \mathrm{rad} / \mathrm{s}
\end{array}
\end{aligned}
$$

Step Response for Series RLC Circuit

Write the equation for the response and solve for the unknown coefficients:

$$
\begin{aligned}
& v_{C}(t)=100+B_{1} e^{-8000 t} \cos 6000 t+B_{2} e^{-8000 t} \sin 6000 t \mathrm{~V}, t \geq 0 \\
& v_{C}(0)=V_{F}+B_{1}=V_{0} \quad \therefore \quad 100+B_{1}=50 \\
& \frac{d v_{C}(0)}{d t}=-\alpha B_{1}+\omega_{d} B_{2}=\frac{I_{0}}{C} \quad \therefore \quad-8000 B_{1}+6000 B_{2}=0 \\
& \Rightarrow \quad B_{1}=-50 \mathrm{~V}, \quad B_{2}=66.67 \mathrm{~V} \\
& v_{C}(t)=100-50 e^{-8000 t} \cos 6000 t+66.67 e^{-8000 t} \sin 6000 t \mathrm{~V}, t \geq 0
\end{aligned}
$$

