

Instantaneous Power

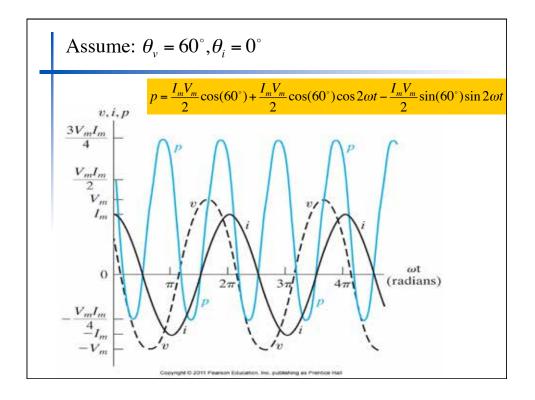
$$v = V_m \cos(\omega t + \theta_v - \theta_i)$$

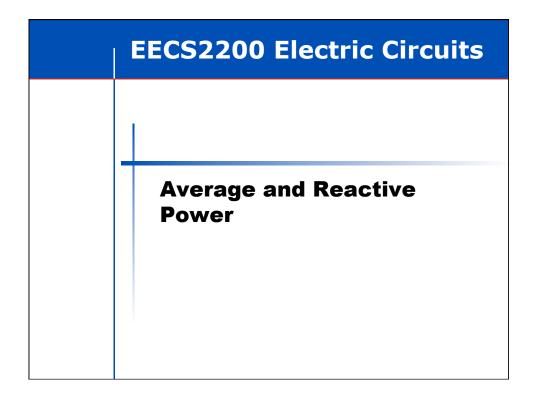
$$i = I_m \cos(\omega t)$$

$$p = I_m V_m \cos(\omega t + \theta_v - \theta_i) \cos(\omega t)$$

$$\because \cos(\alpha) \cos(\beta) = \frac{1}{2} \cos(\alpha - \beta) + \frac{1}{2} \cos(\alpha + \beta)$$

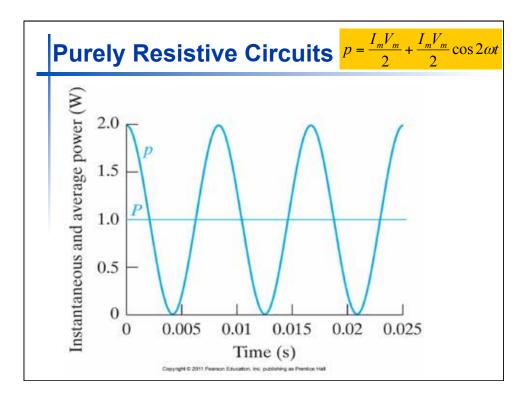
Let $\alpha = \omega t + \theta_v - \theta_i, \beta = \omega t$

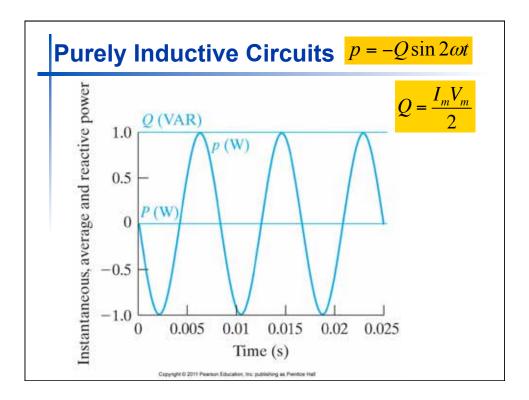

$$\therefore p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(2\omega t + \theta_v - \theta_i)$$


Instantaneous Power

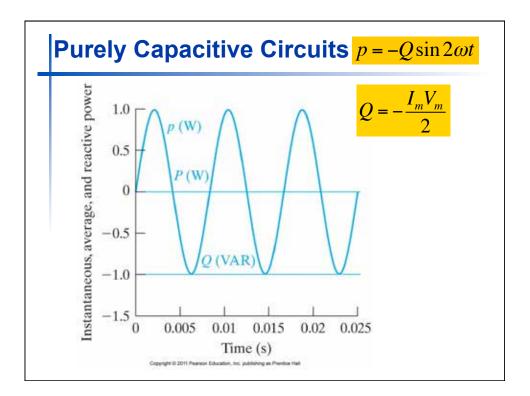
$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(2\omega t + \theta_v - \theta_i)$$
Given $\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$

$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t$$

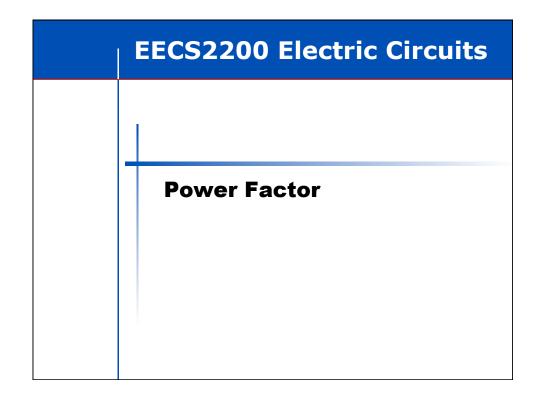

$$-\frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$



Average and Reactive Power
$$p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t + \frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$$
 $p = P + P \cos 2\omega t - Q \sin 2\omega t$ $P = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i), Q = \frac{I_m V_m}{2} \sin(\theta_v - \theta_i)$ P is the average power(or real power) with unitWatt. P is the power transformed from electric to
nonelectric energy.Q is the reactive power with unit VAR (volt-amp
reactive).


Purely Resistive Circuits
• In purely resistive circuits, voltage and
current are in phase, i.e.
$$\theta_v = \theta_i$$

 $p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t$
 $-\frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$
 $\theta_v - \theta_i = 0$
 $\Rightarrow p = \frac{I_m V_m}{2} + \frac{I_m V_m}{2} \cos 2\omega t$

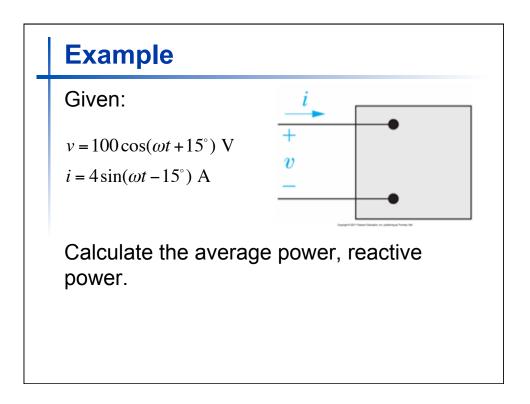

Purely Inductive Circuits • Voltage and current are out of phase by 90 degree, i.e. voltage leads current by 90 degree, $\theta_v - \theta_i = 90^\circ$ $p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t$ $-\frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$ $\theta_v - \theta_i = 90^\circ, Q = \frac{I_m V_m}{2}$ $\rightarrow p = -Q \sin 2\omega t$

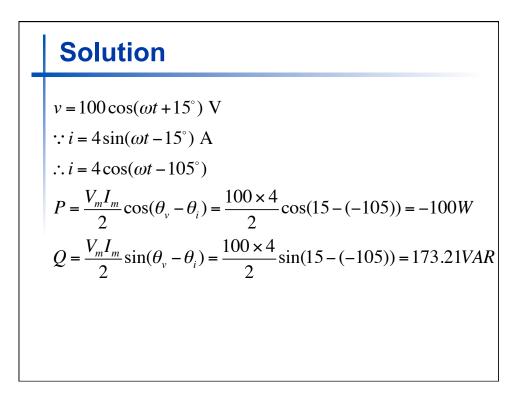
Purely Capacitive Circuits • Voltage and current are out of phase by 90 degree, i.e. voltage lags current by 90 degree, $\theta_v - \theta_i = -90^\circ$ or $\theta_i - \theta_v = 90^\circ$ $p = \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) + \frac{I_m V_m}{2} \cos(\theta_v - \theta_i) \cos 2\omega t$ $-\frac{I_m V_m}{2} \sin(\theta_v - \theta_i) \sin 2\omega t$ $\theta_v - \theta_i = -90^\circ, Q = -\frac{I_m V_m}{2}$ $\rightarrow p = -Q \sin 2\omega t$

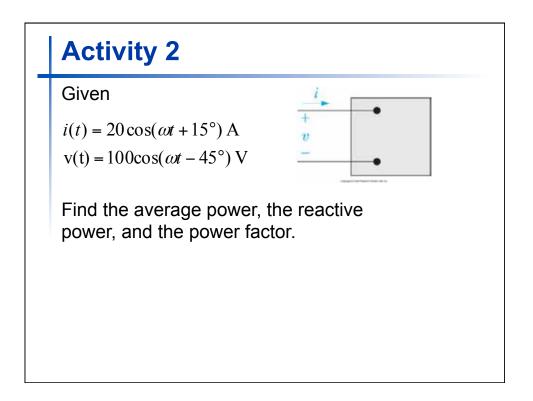
Summary Resistors P > 0, Q = 0 Resistors absorb real power and have no reactive power Inductors P = 0, Q > 0 Inductors absorb reactive power and have no real power Capacitors P = 0, Q < 0 Capacitors generate reactive power and have no real power

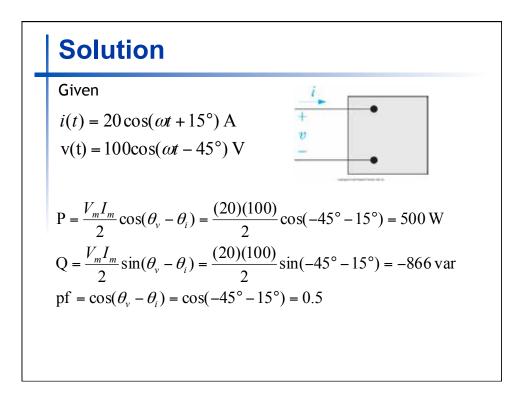
Power Factor Power factor angle: $\theta_v - \theta_i$ Power factor: $pf = cos(\theta_v - \theta_i), \quad 0 \le pf \le 1$ This is a term that appears in the definition of average power, i.e. $P = \frac{I_m V_m}{2} cos(\theta_v - \theta_i)$ When pf = 1, the component is purely resistive. When pf = 0, the component is purely reactive.

Power Factor


 Knowing the power factor does not tell you the value of the power factor angle,

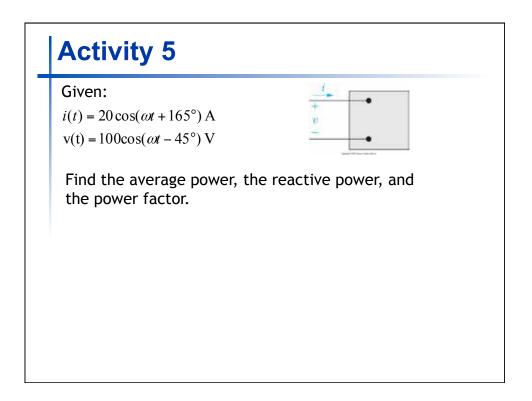

 $pf = cos(\theta_v - \theta_i) = cos(\theta_i - \theta_v)$

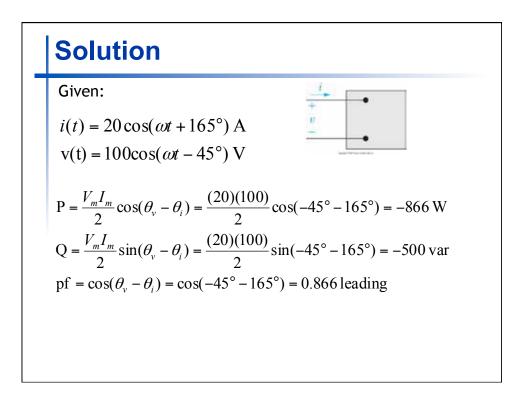

- To distinguish between inductive and capacitive reactance, we use the modifiers "leading" and "lagging":
 - When the pf is leading, the current leads the voltage a capacitive load.
 - when pf is lagging, the current lags the voltage – an inductive load.

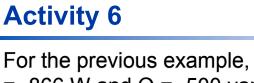

Activity 1

- Suppose the power factor of an impedance is 0.7 leading. This tells us that the simplest model of this impedance is comprised of
- A. A capacitor
- B. An inductor
- C. A capacitor and a resistor
- D. An inductor and a resistor

Activity 3

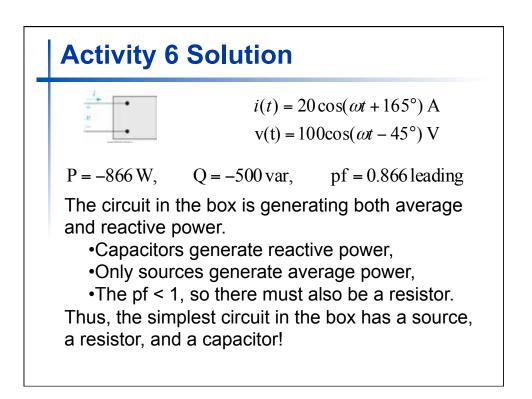

For the previous example, we calculated a power factor of 0.5, but is it leading or lagging?

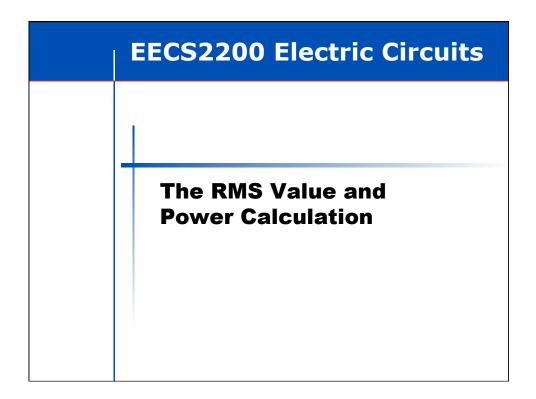

- A. Leading
- B. Lagging
- C. Can't tell from the information

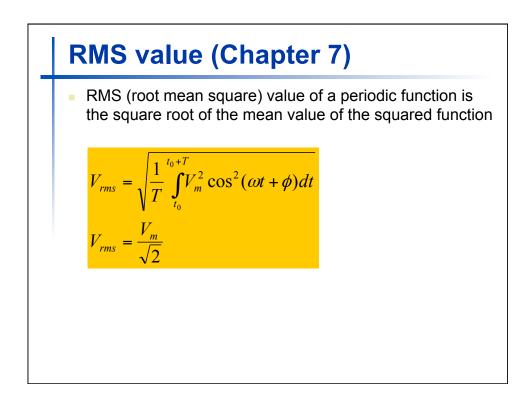

Activity 4

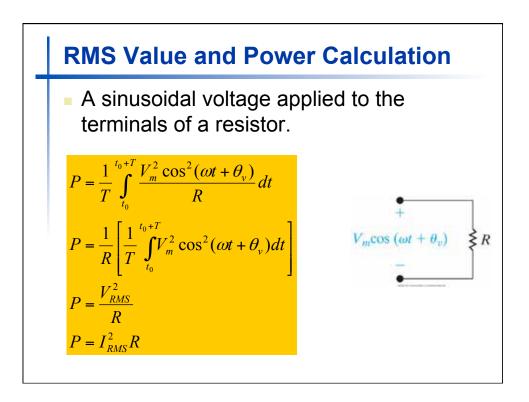
For the previous example, the average power for the circuit in the box is 500 W and the reactive power is -866 var. This means the circuit is

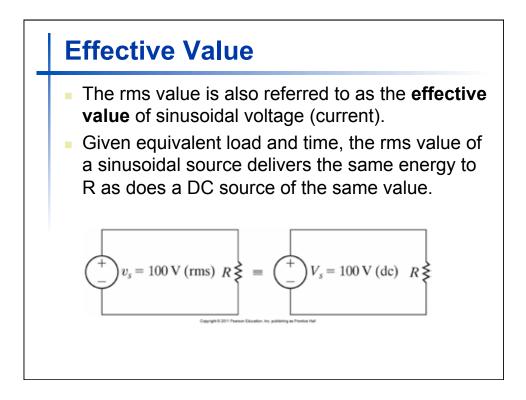
- A. Generating P and generating Q
- B. Generating P and absorbing Q
- C. Absorbing P and generating Q
- D. Absorbing P and absorbing Q






For the previous example, repeated below, P = -866 W and Q = -500 var. The simplest model of the circuit in the box is:


- A. A resistor and a capacitor
- B. A resistor and an inductor
- C. None of the above



Appliance	Average Waltage	Est. kWh Consumed Annually ^a	Appliance	Average Wattage	Est. kWh Consumed Annually*
Food preparation			Health and beauty		
Coffeemaker	1,200	140	Hair dryer	600	25
Dishwasher	1.201	165	Shaver	15	0.5
Egg cooker	516	14	Sunlamp	279	16
Frying pan	1,196	100	Home entertainment		
Mixer	127	2	Radio	71	86
Oven, microwave (only)	1,450	190	Television, color, tube type	240	528
Range, with oven	12.200	596	Solid-state type	145	320
Toaster	1,146	39	Housewares		
Laundry			Clock	2	17
Clothes dryer	4,856	993	Vacuum cleaner	630	46
Washing machine, automatic	512	103	a) Based on normal usage. When using these figures for projection such factors as the size of the specific appliance, the geographis area of use, and individual usage should be taken into consider tion. Note that the wattages are not additive, since all units are		
Water heater	2,475	4.219			
Quick recovery type	4,474	4,811			
Comfort conditioning		normally not in operation at the same time.			
Air conditioner (room)	860	860 ^b	b) Based on 1000 hours of operation per year. This figure will vary widely depending on the area and the specific size of the unit. Sc EEL-Pob 476-2, "Air Conditioning Usage Study," for an estimate for your location. Source: Edison Electric Institute.		
Dehumidifier	257	377			
Fan (circulating)	88	43			
Heater (portable)	1.322	176			

Effective Value

$$P = \frac{V_m I_m}{2} \cos(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \cos(\theta_v - \theta_i)$$

$$= V_{eff} I_{eff} \cos(\theta_v - \theta_i)$$

$$Q = \frac{V_m I_m}{2} \sin(\theta_v - \theta_i) = \frac{V_m}{\sqrt{2}} \frac{I_m}{\sqrt{2}} \sin(\theta_v - \theta_i)$$

$$= V_{eff} I_{eff} \sin(\theta_v - \theta_i)$$

Activity 7 Given a 120V. 100V

Given a 120V, 100W lamp, what are the resistance, effective current, and peak current?

Solution $V_{rms} = 120V, P = 100W$ $P = \frac{V_{rms}^2}{R} \to R = \frac{V_{rms}^2}{P} = \frac{120^2}{100} = 144\Omega$ $I_{rms} = \frac{V_{rms}}{R} = \frac{120}{144} = 0.833A$ $I_m = \sqrt{2}I_{rms} = 1.414 \times 0.833 = 1.18A$