

Example

The parameters of a linear transformer are R1=200 Ω , R2=100 Ω , L1=9H, L2=4H, k=0.5. The transformer couples an impedance consists of an 800 Ω resister in series with a 1µF capacitor to a sinusoidal voltage source. The 300V(rms) source has an internal impedance of 500+j100 Ω and a frequency of 400 rad/s.

Note: $M = k\sqrt{L_1L_2}$

A. Construct a frequency-domain equivalent circuit.

B. Find the impedance seen looking into the primary terminals of the transformer.

C. Find the Thevenin equivalent with respect to the terminals of load.

Solution

The Thevenin impedance will be equal to the impedance of secondary winding plus the impedance reflected from the primary when the voltage source is replaced by a shortcircuit.

$$R_{Th} = R_2 + j\omega L_2 + \frac{\omega^2 M^2}{|Z_{11}|^2}$$

= 100 + j1600 + $\frac{(1200)^2}{|700 + j3700|^2}(700 - j)$
= 171.09 + j1224.26 Ω

