

Chapter 2

- Independent and dependent sources
- Ohm's Law
- KCL and KVL

Chapter 4

- Definitions of essential node, essential path, mesh, planar circuit
- Simultaneous equations, #Eq=#unknown
- Node-voltage method, 2 special cases, supernode concept
- Mesh-current method, supermesh concept
- Source transformation
- · Thevenin and Norton equivalent circuits
- Superposition
- Maximum power transfer condition

Node-Voltage Method

- Based on writing KCL equations at essential nodes
- Solves for node voltages
- The "recipe":
 - 1. Identify the essential nodes
 - 2. Pick a reference node
 - 3. Label remaining essential nodes with voltage values
 - 4. Write a KCL equation at each non-reference essential node
 - 5. Put equations in standard form and solve
 - 6. Check your solutions by balancing power
 - 7. Calculate quantities of interest

Mesh-Current Method

- Uses KVL equations around meshes
- Solves directly for currents
- Special cases for dependent sources and for current sources in a mesh
- The "recipe":
 - 1. Identify the meshes
 - 2. Label each with a mesh current
 - 3. Write a KVL equation around each mesh
 - 4. Put equations in standard form and solve
 - 5. Check your solutions by balancing power
 - 6. Calculate quantities of interest

Inductor and Capacitor comparison		
	Inductor	Capacitor
Symbol		
Units	Henries [H]	Farads [F]
Describing equation	$v(t) = L\frac{di(t)}{dt}$	$i(t) = C \frac{dv(t)}{dt}$
Other equation	$i(t) = \frac{1}{L} \int_{t_o}^{t} v(\tau) d\tau + i(t_o)$	$v(t) = \frac{1}{C} \int_{t_o}^{t} i(\tau) d\tau + v(t_o)$
Initial condition	i(t _o)	v(t _o)
Behavior with const. source	If $i(t) = I$, $v(t) = 0$ \rightarrow short circuit	If $v(t) = V$, $i(t) = 0$ \rightarrow open circuit
Continuity requirement	<i>i(t)</i> is continuous so <i>v(t)</i> is finite	<i>v(t)</i> is continuous so <i>i(t)</i> is finite

Inductor and Capacitor comparison			
	Inductor	Capacitor	
Power	$p(t) = v(t)i(t) = Li(t)\frac{di(t)}{dt}$	$p(t) = v(t)i(t) = Cv(t)\frac{dv(t)}{dt}$	
Energy	$w(t) = \frac{1}{2}Li(t)^2$	$w(t) = \frac{1}{2}Cv(t)^2$	
Initial energy	$w_o(t) = \frac{1}{2}Li(t_o)^2$	$w_o(t) = \frac{1}{2}Cv(t_o)^2$	
Trapped energy	$w(\infty) = \frac{1}{2} Li(\infty)^2$	$w(\infty) = \frac{1}{2}Cv(\infty)^2$	
Series- connected	$L_{eq} = L_1 + L_2 + L_2$ $i_{eq}(t_o) = i(t_o)$	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ y (t) = y_1(t) + y_2(t) + y_2(t)	
Parallel- connected	$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$ $i_{eq}(t_o) = i_1(t_o) + i_2(t_o) + i_3(t_o)$	$C_{eq} = C_1 + C_2 + C_2$ $v_{eq}(t_o) = v(t_o)$	

RL/RC Step (Natural) Response

1.Identify the variable of interest (hint – it's the variable that must be continuous in the circuit):

- For RL, *i(t)* through L
- For RC, v(t) across C

2. Find the initial value of this variable, either $i(0) = I_o$ or $v(0) = V_o$

- From the problem statement
- By analyzing the circuit for t < 0, with L replaced by a short circuit or C replaced by an open circuit

Chapter 8

- Instantaneous power, average power, reactive power, complex power (power triangle)
- Power factor
- RMS values for power calculation
- Maximum average power transfer to the load (un-restricted and restricted)
- Transformer reflected impedance, ideal transformer

