Assignment 1 - EECS 3451 - Fall 2015

Q1.

Use the Jupyter Notebook to sketch each of the following CT signals as a functon of the independent variable t over the specified range (Note: Submit 2, 4, 6 for the Assignment):

1. $x_{1}(t)=\cos (3 \pi k / 4+\pi / 8)$ for $-1 \leq t \leq 2$
2. $x_{2}(t)=\sin (-3 \pi t / 8+\pi / 2)$ for $-1 \leq t \leq 2$
3. $x_{3}(t)=5 t+3 e^{-t}$ for $-2 \leq t \leq 2$
4. $x_{4}(t)=(\sin (3 \pi t / 4+\pi / 8))^{2}$ for $-1 \leq t \leq 2$
5. $x_{5}(t)=\cos (3 \pi t / 4+\sin \pi t / 2)$ for $-2 \leq t \leq 3$
6. $x_{6}(t)=t e^{-2 t}$ for $-2 \leq t \leq 3$

Q2.

Use the Jupyter Notebook to sketch each of the following DT signals as a functon of the independent variable k over the specified range. (Note: Submit 2, 4, 6 for the Assignment):

1. $x_{1}[k]=\cos (3 \pi k / 4+\pi / 8)$ for $-5 \leq k \leq 5$
2. $x_{2}[k]=\sin (-3 \pi k / 8+\pi / 2)$ for $-10 \leq k \leq 10$
3. $x_{3}[k]=5 k+3 e^{-k}$ for $-5 \leq k \leq 2$
4. $x_{4}[k]=|\sin (3 \pi k / 4+\pi / 8)|$ for $-6 \leq k \leq 10$
5. $x_{5}[k]=\cos 3 \pi k / 4+\sin \pi k / 2$ for $-10 \leq k \leq 10$
6. $x_{6}[k]=k e^{-2 k}$ for $-10 \leq k \leq 10$

Q3.
Determine if the following CT signals are periodic. If yes, calculate the fundamental period T_{0} for the signal (Note submit 1, 4, 7 for the Assignment):

1. $x_{1}(t)=\sin (-5 \pi t / 8+\pi / 2)$
2. $x_{2}(t)=|\sin (-5 \pi t / 8+\pi / 2)|$
3. $x_{3}(t)=\sin (6 \pi t / 7)+2 \cos (3 t / 5)$
4. $x_{4}(t)=e^{j(5 t+\pi / 4)}$
5. $x_{5}(t)=e^{j 3 \pi t / 8}+e^{\pi t / 86}$
6. $x_{6}(t)=2 \cos (4 \pi t / 5) \times \sin ^{2}(16 t / 3)$
7. $x_{7}(t)=1+\sin 20 t+\cos (30 t+\pi / 3)$

Q4.
Determine if the following DT signals are periodic. If yes, calculate the fundamental period N_{0} for the signal (Note submit A, D, F for the Assignment):

1. $x_{1}[k]=-5 \times(-1)^{k}$
2. $x_{2}[k]=e^{j(7 \pi k / 4)}+e^{j(3 k / 4}$
3. $x_{3}[k]=e^{j(7 \pi k / 4)}+e^{j(3 \pi k / 4))}$
4. $x_{4}[k]=\sin (3 \pi k / 8)+\cos (63 \pi k / 64)$
5. $x_{5}[k]=e^{j 7 \pi k / 4}+\cos (4 \pi k / 7+\pi)$
6. $x_{6}[k]=\sin (3 \pi k / 8) \cos (63 \pi k / 64)$

Q5.

Show that the average power of the CT periodic signal $x(t)=A \sin \left(\omega_{0} t+\theta\right)$ with real valued coefficient A is given by $A^{2} / 2$.

Q6.

Write a set of Python functions that compute and plot the following CT signals. In each case, use a sampling interval of 1 ms .

1. $x(t)=e^{-2 t} \sin 10 \pi t$
2. A periodic signal $x(t)$ with fundamental period $T=5$. The value over one period is given by:

$$
x(t)=5 t \quad 0 \leq t \leq 5
$$

Use the scipy. signal. sawtooth function to plot 5 periods over the range $-10 \leq t \leq 15$.
3. The unit step function $u(t)$ over the range $-10 \leq t \leq 10$ using the numpy. sign function.
4. The rectangular pulse function $\operatorname{rect}(t)$:

$$
\operatorname{rect}\left(\frac{t}{10}\right)= \begin{cases}1 & -5 \leq t \leq 5 \\ 0 & \text { elsewhere }\end{cases}
$$

using the function from C.
5. A periodic signal $x(t)$ with fundamental period $T=6$. The value over one period is given by:

$$
x(t)=\left\{\begin{array}{cc}
3 & |t| \leq 1 \\
0 & 1<|t| \leq 3
\end{array}\right.
$$

Use the scipy.signal.square function.

