EECS 3451 Signals and Systems

H. Chesser (PSE 246)

Agenda

- Course Overview and Mechanics:
 - Syllabus
 - Marking
 - Schedule
 - Labs
 - Etc
- Intro to Signals (Chapter 1)
- Assignment 1

Course Content, Format

- Continuous (CT) and sampled or discrete (DT) signals
- Theory
 - Behaviour of linear differential equations with constant coefficients
 - Signal analysis/synthesis using transforms (Fourier, Laplace, Z) and convolution
- Applications
 - filtering,signal processing
 - feedback controls
- Two 90-minute lectures, 3-hour lab each week

Textbook, Tools

- Wickert, M., "Signals and Systems for Dummies", John Wiley & Son, 2013, ISBN: 978-1-118-47581-2
- Python (Anaconda), Jupyter Notebooks available in Lassonde Bldg computers
- Open source recommend Anaconda distribution (Python 3.4 - "I want Python 3.4" link):

http://continuum.io/downloads#py34

Assignments (4)	10%
Quizzes (2)	10%
Lab Projects	25%
Mid-term	15%
Exam	40%
TOTAL	100%

Rough Lecture/Assignment/Quiz/Lab Schedule

Week	Lab (M, F)	Day	Date	Assignment/Quiz	Lecture Topic (Reading)	
1		R	10-Sep		Introduction to Signals (Chapter 1): 1. Transformations: Shifting and Scaling, 2. Types: Periodic vs. Aperiodic; Even vs. odd; Energy vs. Power, 3. Examples: Exponential; Sinusoidal; Ramp; Gate; Impulse; Step	
2	Lab 1 (Python)	Т	15-Sep			
		R	17-Sep		CT and DT Systems (Chapter 2): 1. System Connections and Properties	
3		Т	22-Sep	Assignment 1 due	Time Domain Analysis, LTIC Systems (Chapter 3): 1. Constant Coefficient Differential Equations 2. Solution of Differential Equations	
	Lab 1 due	R	24-Sep		2. Solution of Differential Equation 3. Convolution	
4	Lab 2 (Audio)	Т	29-Sep			
		R	1-Oct	Quiz 1		
5		Т	6-Oct		Integral Transforms (4.1, 4.2, 4.3, Chapter 6): 1. Transformation of LTICs 2. Solution of LTICs using Laplace Transforms 3. Transfer functions from Constant Coefficient Differential Equations 4. Convolution Property, Multiplication Property	
	Lab 2 due	R	8-Oct			
6	Lab 3 (B 5 th)	Т	13-Oct	Assignment 2 due	Fourier Transform - CT Systems (Chapter 4, 5): 1. CT Fourier Transform for CT Periodic Signal 2. CT Non-periodic Signals: CT Fourier Transform 3. Properties of CT Fourier Transform	
		R	15-Oct			
7	Lab 3 due	Т	20-Oct			
		R	22-Oct	Mid-term Test		

Rough Lecture/Assignment/Quiz Schedule (Cont'd)

Week	Lab (M, F)	Day	Date	Assignment/Quiz	Topic/Exercises
8		Т	27-Oct		Design of Frequency Selective Filters
	No Labs	R	29-Oct	Fall Reading Day	(Chapter 7) 1. Design of CT (analogue) filters
9	Lab 4 (4-Sound Synth)	Т	3-Nov	Assignment 3 due	2. Butterworth filters Sampling and Quantization (Chapter 9) Time Domain Analysis of DT Systems (Chapter 10) z Transform for DT Signals and Systems (Chapter 13) 1. z Transform: Definition 2. DTFT for DT Periodic Signal
		R	5-Nov		
10		Т	10-Nov		
	Lab 4 due	R	12-Nov		
11	Lab 5 (6 – Speech)	Т	17-Nov	Assignment 4 due	Properties of DT Fourier Transform Convolution Property, Multiplication Property: Circular
		R	19-Nov		Convolution. Digital Signal Processing
12		Т	24-Nov		
	Lab 5 due	R	26-Nov	Quiz 2	
13	Lab 6 (12 – AM radio)	Т	1-Dec		CT and DT Control Systems 1. Transfer functions from Constant Coefficient Difference Equations
		R	3-Dec		
14	Lab 6 due	Т	8-Dec	No class	
		R	10-Dec	No Class	

Course Web Site

- Course resources available online wiki.eecs.yorku.ca
- You can check site to:
 - Review lecture material
 - Lab manual
 - Check schedule, due dates, marks
 - Submit assignments, labs use web submit
 - Ask course-related questions via the forum

Intro to Signals (Chapter 1)

- Typically we are talking about:
 - Time-varying continuously (CT) OR sampled (DT)
 - Electrical (voltage/current) output...
 - ...from a transducer which is monitoring some ongoing process (sending analog information), OR
 - ...from a processor or ADC which is sending digital information
 - Main idea is that there is a "sender" and "receiver" that exchange information via the signal

$$T_s = 0.25$$

Signal Examples

• Sound (pressure) - CT

Light - DT

Analog vs. Digital Signals

 CT and DT classification is a mathematical one

$$x(t) = \sin(0.2\pi t)$$
$$x[k] = \sin(0.2\pi k)$$

- Analog/Digital classification is based on hardware and how it operates on signals
- In general CT = Analog, DT = Digital

Periodic vs. Aperiodic

Signal (CT, DT) is periodic if

$$x(t) = x(t+T_0)$$
$$x[k] = x[k+K_0]$$

CT, sinusoidal signals are periodic by definition

$$x(t) = A\sin(2\pi ft + \theta) = x(t + T_0) = A\sin(2\pi ft + 2\pi fT_0 + \theta)$$

$$fT_0 = m$$

$$T_0 = 1/f \quad (m=1)$$

Sampled sinusoidal signals may NOT be periodic

$$x[k] = A\sin(2\pi f T_s k + \theta) = x[k + K_0] = A\sin(2\pi f T_s k + 2\pi f T_s K_0 + \theta)$$

$$fT_s K_0 = m$$

$$K_0 = m/fT_s = mT_0/T_s$$

To be periodic, the sampling period and sinusoidal frequency (period) MUST be expressible as a rational fraction (n/m).

Example Problems

(1) CT signal is $x(t) = \sin(0.25\pi t)$

What is period?

Top plot also shows the sampled DT signal for $T_s = 1$ s

Is x[k] periodic? If so, what is K_0 ?

(2) Bottom is the DT sampled signal for $T_s = 0.75$ s.

Is x[k] periodic? If so, what is K_0 ?

Complex Number Review (Chapter 2)

 $e^{j\pi} = ??$

Believing in Imaginary Numbers

- Quick refresher for Lab 1
- Contain a real part and an imaginary part

$$a+jb=A < \theta = A e^{j\theta}$$

$$A = \sqrt{a^2 + b^2}$$

$$\theta = \tan^{-1} \frac{b}{a}$$

Leonhard Euler, 1707 - 1783

Phasor Diagram Example

Phasor Diagram

 $s = -0.5 + j 4\pi x(t) = e^{st}$

Time Domain (Real Component)

Assignment 1

Will post to course page today

