
The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 5

Multiprocessors and

Thread-Level Parallelism

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Thread-Level parallelism
 Have multiple program counters
 Uses MIMD model
 Targeted for tightly-coupled shared-memory

multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread
= grain size
 Threads can be used for data-level parallelism, but

the overheads may outweigh the benefit

Introduction

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 2

3Copyright © 2012, Elsevier Inc. All rights reserved.

Types

 Symmetric multiprocessors
(SMP)
 Small number of cores
 Share single memory with

uniform memory latency

 Distributed shared memory
(DSM)
 Memory distributed among

processors
 Non-uniform memory

access/latency (NUMA)
 Processors connected via

direct (switched) and non-
direct (multi-hop)
interconnection networks

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Processors may see different values through
their caches:

C
entralized S

hared-M
em

ory A
rchitectures

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 3

5Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Coherence: How do other processors see a
memory update?

 Writes to the same location by any two
processors are seen in the same order by all
processors

 Consistency
 When a written value will be returned by a read
 If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized S

hared-M
em

ory A
rchitectures

6

Cache Coherence -- more

 A memory system is coherent if
1. A read by P to location X that follows a write by P to

location X with no writes to X in between (by any
processor) returns the value written by P.

2. A read by processor p1 to X that follows a write by P2
to X returns the value written by P2 if the read and
write are sufficiently separated in time, and no other
writes to X occurred between the two accesses.

3. Writes to the same location are serialized Two writes
by two processors to the same location are seen in the
same order by all processors

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 4

7Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

 Coherent caches provide:
 Migration: movement of data
 Replication: multiple copies of data

 Cache coherence protocols
 Directory based

 Sharing status of each block kept in one location

 Snooping
 Each core tracks sharing status of each block

C
entralized S

hared-M
em

ory A
rchitectures

8

Cache Coherence Protocols

1. Directory based — Sharing status of a
block of physical memory is kept in just one
location, the directory

2. Snooping — Every cache with a copy of
data also has a copy of sharing status of
block, but no centralized state is kept
 All caches are accessible via some broadcast medium

(a bus or switch)

 All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that

is requested on a bus or switch access

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 5

9

Snooping Protocols

 The processor may have an exclusive access
to the data, in this case the processor may
change it. This is knows as write invalidate

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 ---- 0

B reads X Miss 1 1 1

10

Snooping Protocols

 The alternative is to update write update or
write broadcast and is only done for shared
blocks

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 1 1

B reads X Miss 1 1 1

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 6

11Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Write invalidate
 On write, invalidate all other copies
 Use bus itself to serialize

 Write cannot complete until bus access is obtained

 Write update
 On write, update all copies

C
entralized S

hared-M
em

ory A
rchitectures

12

Comparison

 Multiple writes to the same word with no
intervening reads require multiple write
broadcast for an update protocol, and one
invalidate for invalidate protocols.

 With multiword cache blocks, write to multiple
words (bytes) in the same line require multiple
broadcast, while only one invalidate
(assuming no intervening reads).

 The delay between writing a word in a
processor, and reading it by another
processor is less in write update

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 7

13Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent

to the requesting processor

 Cache lines marked as shared or
exclusive/modified
 Only writes to shared lines need an invalidate

broadcast
 After this, the line is marked as exclusive

C
entralized S

hared-M
em

ory A
rchitectures

14Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

C
entralized S

hared-M
em

ory A
rchitectures

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 8

15Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols
C

entralized S
hared-M

em
ory A

rchitectures

16Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Complications for the basic MSI protocol:
 Operations are not atomic

 E.g. detect miss, acquire bus, receive a response
 Creates possibility of deadlock and races
 One solution: processor that sends invalidate can hold bus

until other processors receive the invalidate

 Extensions:
 Add exclusive state to indicate clean block in only one

cache (MESI protocol)
 Prevents needing to write invalidate on a write

 Owned state

C
entralized S

hared-M
em

ory A
rchitectures

