
The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 1

1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 5

Multiprocessors and

Thread-Level Parallelism

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Thread-Level parallelism
 Have multiple program counters
 Uses MIMD model
 Targeted for tightly-coupled shared-memory

multiprocessors

 For n processors, need n threads

 Amount of computation assigned to each thread
= grain size
 Threads can be used for data-level parallelism, but

the overheads may outweigh the benefit

Introduction

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 2

3Copyright © 2012, Elsevier Inc. All rights reserved.

Types

 Symmetric multiprocessors
(SMP)
 Small number of cores
 Share single memory with

uniform memory latency

 Distributed shared memory
(DSM)
 Memory distributed among

processors
 Non-uniform memory

access/latency (NUMA)
 Processors connected via

direct (switched) and non-
direct (multi-hop)
interconnection networks

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Processors may see different values through
their caches:

C
entralized S

hared-M
em

ory A
rchitectures

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 3

5Copyright © 2012, Elsevier Inc. All rights reserved.

Cache Coherence

 Coherence: How do other processors see a
memory update?

 Writes to the same location by any two
processors are seen in the same order by all
processors

 Consistency
 When a written value will be returned by a read
 If a processor writes location A followed by location B,

any processor that sees the new value of B must also
see the new value of A

C
entralized S

hared-M
em

ory A
rchitectures

6

Cache Coherence -- more

 A memory system is coherent if
1. A read by P to location X that follows a write by P to

location X with no writes to X in between (by any
processor) returns the value written by P.

2. A read by processor p1 to X that follows a write by P2
to X returns the value written by P2 if the read and
write are sufficiently separated in time, and no other
writes to X occurred between the two accesses.

3. Writes to the same location are serialized Two writes
by two processors to the same location are seen in the
same order by all processors

Copyright © 2012, Elsevier Inc. All rights reserved.

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 4

7Copyright © 2012, Elsevier Inc. All rights reserved.

Enforcing Coherence

 Coherent caches provide:
 Migration: movement of data
 Replication: multiple copies of data

 Cache coherence protocols
 Directory based

 Sharing status of each block kept in one location

 Snooping
 Each core tracks sharing status of each block

C
entralized S

hared-M
em

ory A
rchitectures

8

Cache Coherence Protocols

1. Directory based — Sharing status of a
block of physical memory is kept in just one
location, the directory

2. Snooping — Every cache with a copy of
data also has a copy of sharing status of
block, but no centralized state is kept
 All caches are accessible via some broadcast medium

(a bus or switch)

 All cache controllers monitor or snoop on the medium to
determine whether or not they have a copy of a block that

is requested on a bus or switch access

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 5

9

Snooping Protocols

 The processor may have an exclusive access
to the data, in this case the processor may
change it. This is knows as write invalidate

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 ---- 0

B reads X Miss 1 1 1

10

Snooping Protocols

 The alternative is to update write update or
write broadcast and is only done for shared
blocks

Processor activity Bus content of A Content of B Memory

0

A reads X Miss 0 ------ 0

B reads X Miss 0 0 0

A writes X INV X 1 1 1

B reads X Miss 1 1 1

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 6

11Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Write invalidate
 On write, invalidate all other copies
 Use bus itself to serialize

 Write cannot complete until bus access is obtained

 Write update
 On write, update all copies

C
entralized S

hared-M
em

ory A
rchitectures

12

Comparison

 Multiple writes to the same word with no
intervening reads require multiple write
broadcast for an update protocol, and one
invalidate for invalidate protocols.

 With multiword cache blocks, write to multiple
words (bytes) in the same line require multiple
broadcast, while only one invalidate
(assuming no intervening reads).

 The delay between writing a word in a
processor, and reading it by another
processor is less in write update

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 7

13Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Locating an item when a read miss occurs
 In write-back cache, the updated value must be sent

to the requesting processor

 Cache lines marked as shared or
exclusive/modified
 Only writes to shared lines need an invalidate

broadcast
 After this, the line is marked as exclusive

C
entralized S

hared-M
em

ory A
rchitectures

14Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

C
entralized S

hared-M
em

ory A
rchitectures

The University of Adelaide, School of Computer Science 24 November 2015

Chapter 2 — Instructions: Language of the Computer 8

15Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols
C

entralized S
hared-M

em
ory A

rchitectures

16Copyright © 2012, Elsevier Inc. All rights reserved.

Snoopy Coherence Protocols

 Complications for the basic MSI protocol:
 Operations are not atomic

 E.g. detect miss, acquire bus, receive a response
 Creates possibility of deadlock and races
 One solution: processor that sends invalidate can hold bus

until other processors receive the invalidate

 Extensions:
 Add exclusive state to indicate clean block in only one

cache (MESI protocol)
 Prevents needing to write invalidate on a write

 Owned state

C
entralized S

hared-M
em

ory A
rchitectures

