Computer Architecture

A Quantitative Approach, Fifth Edition

| Chapter 2

| Memory Hierarchy Design

Introduction

uononpo.nu|

= Programmers want unlimited amounts of memory with
low latency

= Fast memory technology is more expensive per bit than
slower memory

= Solution: organize memory system into a hierarchy
= Entire addressable memory space available in largest, slowest
memory
= Incrementally smaller and faster memories, each containing a
subset of the memory below it, proceed in steps up toward the
processor
= Temporal and spatial locality insures that nearly all
references can be found in smaller memories

= Gives the allusion of a large, fast memory being presented to the
processor

Memory Hierarchy

uononpo|

L2
o]
CPU a
Memory O bus | Disk storage
©
2 Disk
memo
Ragistar Lavel 1 Leval 2 Level 3 Memary mlir\ingi
raference Cache Cache Cache refarence
Size: 1000 bytes B4 KB 256 KB 2-4MB 4-18 GB 4-18TE
Speed: 300ps 1ns 3-10ns 10-20ns 50-100ns 5-10ms

{a) Memaory hierarchy for server

Memory
bus
Memery

CPU

FLASH
Register Lewel 1 Level 2 Memory n}emory
referance Cache Cache reference relerence
reference reference
Size: 500 bytes B4 KB 258 KB 266512 MB 4-8GB
Spead: 500ps 2ns 10-20ns 50100 ns 25-80us

(b} Memary hierarchy for a personal mobile davice

=
Memory Performance Gap :
Q
§.
100,000
10,000 - rew
§ 1,000
@
£ Processaor,
=]
T 100
[
10 L
Memory
1 v T T T T T
1980 1985 1990 1995 2000 2005 2010
Year

Memory Hierarchy Design

uononpo|

= Memory hierarchy design becomes more crucial
with recent multi-core processors:
= Aggregate peak bandwidth grows with # cores:

= Intel Core i7 can generate two references per core per clock

= Four cores and 3.2 GHz clock
= 25.6 billion 64-bit data references/second +
= 12.8 billion 128-bit instruction references
= =409.6 GB/s!

=« DRAM bandwidth is only 6% of this (25 GB/s)

» Requires:
= Multi-port, pipelined caches
= Two levels of cache per core
= Shared third-level cache on chip

Performance and Power

uononpo.nu|

= High-end microprocessors have >10 MB on-chip

cache
= Consumes large amount of area and power budget

Terminology

s A Block: The smallest unit of information
transferred between two levels.

= Hit: Item is found in some block in the
upper level (example: Block X)

s Miss: Item needs to be retrieved from a

block in the lower level (Block Y)
= Miss Rate =1 - (Hit Rate)

= Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Cache operation

s Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Cache Organization: Placement

1 Direct mapped cache: A block can be placed in only one
%oca;tl_on (cache block frame), given by the mapping
unction:
index= (Block address) MOD (Number of blocks in
cache)

7 Eully associative cache: A block can be placed anywhere
IN cache. (N0 mapping function).

3 Set associative cache: A block can be Placed ina]
restricted set of places, or cache block frames. A setis a

group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is called
n-way set-associative.

Cache Miss

» Compulsory: The very first access to a
block is always a miss— Occurs even if you
have an infinite cache

m Capacity: The cache is not big enough to
hold all the blocks required for the
execution of the program— A bigger cache
helps

m Conflict: If not a fully associative, a block
may be discarded and brought back again.

Cache Organization: Placement

= Direct mapped Cache

oooooooo
oooooooo
oooooooo

i
1 / \o Ne
00001 00101 01001 01101 10001 10101 11001 11101
Memory

Placement: DM

3130 .,.,.,431211 ,..21 0
1K = 1024 Blocks] ® ||
Each block = one word it 1\20 10 g bata
Tag

Can cache up to
2%2 pytes = 4 GB ndex
of memory

Mapping function: ® +

Cache Block frame number = 1021
(Block address) MOD (1024) 102z

1023

i.e. index field or

10 low bit of block address

Block Address = 30 bits

Index = 10 bits

Placement DM

Address (showing bit positions)

31...6 15..4 3210

LT 111

it 16 12 |2 Byte bata
Tag offset

Index Block offset
16 bits 128 bits
vV Tag Data

aK
entries
16 32 32 32 32

Cache Organization

Fully associative: Direct mapped: Sel assodialive;

block 12 can go block 12 can go block 12 can go

anywhare only into block 4 amywhere in set 0
{12 mod 8) (12 mod 4)

Block 01234567 Block 012345867 Block D1234567
ne. ne, ne,

Cache
== R
Set Set Set Set
o 1 2 3
Block frame address
Block 111141141 1222222222233
ne. 012345678801 23466769012345678801

Memaory

Cache Organization

= Each block frame in cache has an address tag.
= The tags of every cache block that might contain the required
data are checked in parallel.
= A valid bit is added to the tag to indicate whether this entry
contains a valid address.
= The address from the CPU to cache is divided into:
= A block address, further divided into:
= Anindex field to choose a block set in cache.
. (no index field when fully associative).
= Atag field to search and match addresses in the selected set.
= A block offset to select the data from the block.

Block Address
Index

Cache Organization

—

Physical Memory Address Generated by CPU

Block Address
Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

N\

Tag size = address size - index size - offset size
Number of Sets

Mapping function:

Cache set or block frame number = Index =

= IBIock Addressi MOD INumber of Setsl

Set Associative: 4KB 4Way

Address
3130...12111098...3210

[[[]
+22 8
1024 block frames

— Index V Tag Data V Tag Data V Tag Data V Tag Data
Each block = or_1e Yvord o E I
4-way set associative ;
1024 / 4= 256 sets

253
254
255

Can cache up to

232 pytes = 4 GB B ‘_ l_ B

of memory

Block Address = 30 bits LU ‘

Index = 8 bits

4-to-1 multiplexor

Mapping Function: Cache Set Number = index= (Block address) MOD (256)"it Data

Miss Rate

= Associativity: 2-way 4-way 8-way

= Size LRU Random LRU Random LRU Random
= 16KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

= 64KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

= 256 KB 115% 1.17% 1.13% 1.13% 1.12% 1.12%

Cache Performance

= CPUtime = Instruction count x CPI x Clock cycle time
= CPlexecution = CPI with ideal memory
= CPl= CPlexecution + Mem Stall cycles per instruction
= Mem Stall cycles per instruction =
Mem accesses per instruction x Miss rate x Miss penalty
= CPUtime = Instruction Count x (CPlexecution +

Mem Stall cycles per instruction) x Clock cycle time

= CPUtime = IC x (CPlexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time

= Misses per instruction = Memory accesses per instruction x Miss rate

= CPUtime = IC x (CPlexecution + Misses per instruction x Miss penalty) x
Clock cycle time

Cache Performance

= Assuming the following execution and cache parameters:
= Cache miss penalty = 50 cycles

= Normal instruction execution CPI ignoring memory stalls = 2.0
cycles —

= Missrate =2%
= Average memory references/instruction = 1.33

s CPUtime = IC x [CPI execution + Memory accesses/instruction
X Miss rate X Miss
penalty] x Clock cycle time

s CPUtime with cache = IC x (_2_.9+ (1.33 x 2% x 50)) x clock
cycle time

. = IC x 3.33 x Clock cycle time

= Lower CPI execution increases the impact of cache miss clock

Cache Performance

Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle)
with a single level of cache.

= CPlexecution= 1.1
= Instruction mix: 50% arith/logic, 30% load/store, 20% control
= Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

. CPl = CPlgecuion T mMem stalls per instruction

" Mem Stalls per instruction =

" Mem accesses per instruction x Miss rate x Miss
penalty

" Mem accesses per instruction=1 + .3 = 1.3

" Mem Stalls per instruction = 1.3 x .015x50 = 0.975

. CPI= 1.1 + .975= 2.075

= The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times
faster

Cache Performance

= Suppose for the previous example we double the clock rate to 400 MHZ,
how much faster is this machine, assuming similar miss rate, instruction
mix?

= Since memory speed is not changed, the miss penalty takes more CPU
cycles:

. Miss penalty = 50 x 2 = 100 cycles.

. CPl= 1.1+ 1.3x.015x100=1.1+1.95= 3.05
= Speedup = (CPlold x Cold)/ (CPInew x Cnew)

" = 2.075 x2/ 3.05 = 1.36

= The new machine is only 1.36 times faster rather than 2
times faster due to the increased effect of cache misses.

= CPUs with higher clock rate, have more cycles per cache miss and more
memory impact on CPI.

Cache Performance

= Suppose a CPU uses separate level one (L1) caches for instructions
and data (Harvard memory architecture) with different miss rates for
instruction and data access:
s CPlgecuion = 1.1
= Instruction mix: 50% arith/logic, 30% load/store, 20% control
= Assume a cache miss rate of 0.5% for instruction fetch and a cache data
miss rate of 6%.

= A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles
for both memory reads and writes. Find the resulting CPI using this
cache? How much faster is the CPU with ideal memory?

CPI = CPlgyecuion T Mmem stalls per instruction

Mem Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +

Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penaiy

Mem Stall cycles per instruction=1x0.5/100 x 200 + 0.3x 6/100 x 200 = 1 +
3.6 =4.6

CPl = CPlgecuion + mem stalls per instruction = 1.1 +4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache the CPI would have been = 1.1 + 1.3 X200 = 261.1

Cache Performance

y -~

Size Instruction cache Data cache Unified cache
1 KB 3.06% 24.61% 13.34%
2KB 2.26% 20.57% 9.78%

41 KB 1.78% 15.94% 7.24%
8 KB 1.10% 10.19% 4.57%

16 KB 0.64% 6.47% 2.87%

32KB 0.39% 4. 82% 1.99%

64 KB 0.15% 3.77% 1.35%

128 KB 0.02% 2.88% 0.95%

Write Policy

1 write Though: Data is written to both the cache block
and to a block of main memory.

= The lower level always has the most updated data; an important feature for
I/O and multiprocessing.

= Easier to implement than write back.
= A write buffer is often used to reduce CPU write stall while data is written to

memory.

2 Write back: Data is written or updated only to the cache
block. The modified or dirty cache block is written to
main memory when it's being replaced from cache.

= Writes occur at the speed of cache

= A status bit called a dirty or modified bit, is used to indicate whether the
block was modified while in cache; if not the block is not written back to main
memory when replaced.

= Uses less memory bandwidth than write through.

Write Policy

Write Allocate:

The cache block is loaded on a write miss
followed by write hit actions.

No-Write Allocate:

The block is modified in the lower level (lower
cache level, or main

memory) and not loaded into cache.

