
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 2

Memory Hierarchy Design

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Programmers want unlimited amounts of memory with
low latency

 Fast memory technology is more expensive per bit than
slower memory

 Solution: organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest

memory
 Incrementally smaller and faster memories, each containing a

subset of the memory below it, proceed in steps up toward the
processor

 Temporal and spatial locality insures that nearly all
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the

processor

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy
Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Performance Gap

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Design

 Memory hierarchy design becomes more crucial
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references
 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduction

6Copyright © 2012, Elsevier Inc. All rights reserved.

Performance and Power

 High-end microprocessors have >10 MB on-chip
cache
 Consumes large amount of area and power budget

Introduction

7

Terminology

 A Block: The smallest unit of information
transferred between two levels.

 Hit: Item is found in some block in the
upper level (example: Block X)

 Miss: Item needs to be retrieved from a
block in the lower level (Block Y)
 Miss Rate = 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Copyright © 2012, Elsevier Inc. All rights reserved.

8

Cache operation

 Questions

1. Where a block be placed in the cache
(placement)

2. How is a block is found if it is in the cache
(identification)

3. Which block should be replaced on a
miss (replacement)

4. What happens on a write (write strategy)

Copyright © 2012, Elsevier Inc. All rights reserved.

9

Cache Organization: Placement
1 Direct mapped cache: A block can be placed in only one

location (cache block frame), given by the mapping
function:

index= (Block address) MOD (Number of blocks in
cache)

2 Fully associative cache: A block can be placed anywhere
in cache. (no mapping function).

3 Set associative cache: A block can be placed in a
restricted set of places, or cache block frames. A set is a
group of block frames in the cache. A block is first
mapped onto the set and then it can be placed anywhere
within the set. The set in this case is chosen by:

index = (Block address) MOD (Number of sets in
cache)
If there are n blocks in a set the cache placement is called
n-way set-associative.

10

Cache Miss

 Compulsory: The very first access to a
block is always a miss– Occurs even if you
have an infinite cache

 Capacity: The cache is not big enough to
hold all the blocks required for the
execution of the program– A bigger cache
helps

 Conflict: If not a fully associative, a block
may be discarded and brought back again.

Copyright © 2012, Elsevier Inc. All rights reserved.

11

Cache Organization: Placement

 Direct mapped Cache

CSE4201

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

0
0

0

C a c h e

M e m o ry

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1

12

Placement: DM

2 0 1 0

B y te

o f fs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a ta

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0

1K = 1024 Blocks

Each block = one word

Can cache up to

232 bytes = 4 GB

of memory

Mapping function:

Cache Block frame number =

(Block address) MOD (1024)

i.e. index field or

10 low bit of block address

Block offset

= 2 bits

Block Address = 30 bits

Tag = 20 bits Index = 10 bits

Byte address

13Fall 2009CSE4201

Placement DM
A d d re s s (s ho w in g b it p o s ition s)

1 6 1 2 B yte

o ffs e t

V T ag D a ta

H it D a ta

1 6 32

4 K

e n tr ie s

1 6 b its 12 8 b its

M u x

3 2 3 2 3 2

2

3 2

B lo c k o f fs e tInd ex

T ag

3 1 16 1 5 4 3 2 1 0

Block Address = 28 bits

Tag = 16 bits Index = 12 bits
Block offset

= 4 bits

14

Cache Organization

15

Cache Organization

 Each block frame in cache has an address tag.

 The tags of every cache block that might contain the required
data are checked in parallel.

 A valid bit is added to the tag to indicate whether this entry
contains a valid address.

 The address from the CPU to cache is divided into:
 A block address, further divided into:

 An index field to choose a block set in cache.

 (no index field when fully associative).

 A tag field to search and match addresses in the selected set.

 A block offset to select the data from the block.

Block Address Block

OffsetTag Index

16

Cache Organization

Block Address Block

OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size

Physical Memory Address Generated by CPU

Mapping function:

Cache set or block frame number = Index =

= (Block Address) MOD (Number of Sets)

Number of Sets

17

Set Associative: 4KB 4Way
Address

22 8

V TagIndex

0

1

2

253

254

255

Data V Tag Data V Tag D ata V Tag Data

322 2

4 - to -1 m ultip lexo r

H it Da ta

123891011123 031 0

1024 block frames

Each block = one word

4-way set associative

1024 / 4= 256 sets

Can cache up to

232 bytes = 4 GB

of memory

Block Address = 30 bits

Tag = 22 bits Index = 8 bits
Block offset

= 2 bits

Mapping Function: Cache Set Number = index= (Block address) MOD (256)

18

Miss Rate

 Associativity: 2-way 4-way 8-way

 Size LRU Random LRU Random LRU Random

 16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%

 64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%

 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

19

Cache Performance

 CPUtime = Instruction count x CPI x Clock cycle time

 CPIexecution = CPI with ideal memory

 CPI = CPIexecution + Mem Stall cycles per instruction

 Mem Stall cycles per instruction =

Mem accesses per instruction x Miss rate x Miss penalty

 CPUtime = Instruction Count x (CPIexecution +

Mem Stall cycles per instruction) x Clock cycle time

 CPUtime = IC x (CPIexecution + Mem accesses per instruction x
Miss rate x Miss penalty) x Clock cycle time

 Misses per instruction = Memory accesses per instruction x Miss rate

 CPUtime = IC x (CPIexecution + Misses per instruction x Miss penalty) x

Clock cycle time

20

Cache Performance

 Assuming the following execution and cache parameters:
 Cache miss penalty = 50 cycles

 Normal instruction execution CPI ignoring memory stalls = 2.0
cycles

 Miss rate = 2%

 Average memory references/instruction = 1.33

 CPU time = IC x [CPI execution + Memory accesses/instruction
x Miss rate x Miss
penalty] x Clock cycle time

 CPUtime with cache = IC x (2.0 + (1.33 x 2% x 50)) x clock
cycle time

 = IC x 3.33 x Clock cycle time

 Lower CPI execution increases the impact of cache miss clock
cycles

21

Cache Performance
 Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle)

with a single level of cache.

 CPIexecution = 1.1

 Instruction mix: 50% arith/logic, 30% load/store, 20% control

 Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

 CPI = CPIexecution + mem stalls per instruction

 Mem Stalls per instruction =

 Mem accesses per instruction x Miss rate x Miss
penalty

 Mem accesses per instruction = 1 + .3 = 1.3

 Mem Stalls per instruction = 1.3 x .015 x 50 = 0.975

 CPI = 1.1 + .975 = 2.075

 The ideal memory CPU with no misses is 2.075/1.1 = 1.88 times
faster

22

Cache Performance
 Suppose for the previous example we double the clock rate to 400 MHZ,

how much faster is this machine, assuming similar miss rate, instruction
mix?

 Since memory speed is not changed, the miss penalty takes more CPU
cycles:

 Miss penalty = 50 x 2 = 100 cycles.

 CPI = 1.1 + 1.3 x .015 x 100 = 1.1 + 1.95 = 3.05

 Speedup = (CPIold x Cold)/ (CPInew x Cnew)

 = 2.075 x 2 / 3.05 = 1.36

 The new machine is only 1.36 times faster rather than 2

times faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more
memory impact on CPI.

23

Cache Performance

 Suppose a CPU uses separate level one (L1) caches for instructions
and data (Harvard memory architecture) with different miss rates for
instruction and data access:
 CPIexecution = 1.1
 Instruction mix: 50% arith/logic, 30% load/store, 20% control
 Assume a cache miss rate of 0.5% for instruction fetch and a cache data

miss rate of 6%.
 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles

for both memory reads and writes. Find the resulting CPI using this
cache? How much faster is the CPU with ideal memory?

CPI = CPIexecution + mem stalls per instruction

Mem Stall cycles per instruction = Instruction Fetch Miss rate x Miss Penalty +
Data Memory Accesses Per Instruction x Data Miss Rate x Miss Penalty

Mem Stall cycles per instruction = 1 x 0.5/100 x 200 + 0.3 x 6/100 x 200 = 1 +
3.6 = 4.6

CPI = CPIexecution + mem stalls per instruction = 1.1 + 4.6 = 5.7

The CPU with ideal cache (no misses) is 5.7/1.1 = 5.18 times faster
With no cache the CPI would have been = 1.1 + 1.3 X 200 = 261.1

24

Cache Performance

25

Write Policy

1 Write Though: Data is written to both the cache block
and to a block of main memory.
 The lower level always has the most updated data; an important feature for

I/O and multiprocessing.
 Easier to implement than write back.
 A write buffer is often used to reduce CPU write stall while data is written to

memory.

2 Write back: Data is written or updated only to the cache
block. The modified or dirty cache block is written to
main memory when it’s being replaced from cache.
 Writes occur at the speed of cache
 A status bit called a dirty or modified bit, is used to indicate whether the

block was modified while in cache; if not the block is not written back to main
memory when replaced.

 Uses less memory bandwidth than write through.

26

Write Policy

Write Allocate:

The cache block is loaded on a write miss
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower

cache level, or main

memory) and not loaded into cache.

