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Introduction

 Programmers want unlimited amounts of memory with 
low latency

 Fast memory technology is more expensive per bit than 
slower memory

 Solution:  organize memory system into a hierarchy
 Entire addressable memory space available in largest, slowest 

memory
 Incrementally smaller and faster memories, each containing a 

subset of the memory below it, proceed in steps up toward the 
processor

 Temporal and spatial locality insures that nearly all 
references can be found in smaller memories
 Gives the allusion of a large, fast memory being presented to the 

processor
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Memory Hierarchy
Introduction
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Memory Performance Gap

Introduction
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Memory Hierarchy Design

 Memory hierarchy design becomes more crucial 
with recent multi-core processors:
 Aggregate peak bandwidth grows with # cores:

 Intel Core i7 can generate two references per core per clock
 Four cores and 3.2 GHz clock

 25.6 billion 64-bit data references/second +
 12.8 billion 128-bit instruction references
 = 409.6 GB/s!

 DRAM bandwidth is only 6% of this (25 GB/s)
 Requires:

 Multi-port, pipelined caches
 Two levels of cache per core
 Shared third-level cache on chip

Introduction
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Performance and Power

 High-end microprocessors have >10 MB on-chip 
cache
 Consumes large amount of area and power budget

Introduction
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Terminology

 A Block: The smallest unit of information 
transferred between two levels.

 Hit: Item is found in some block in the 
upper level (example: Block X) 

 Miss: Item needs to be retrieved from a 
block in the lower level (Block Y)
 Miss Rate  = 1 - (Hit Rate)

 Miss Penalty: Time to replace a block in the upper level  + 
Time to deliver the block the processor

Copyright © 2012, Elsevier Inc. All rights reserved.
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Cache operation

 Questions

1. Where a block be placed in the cache 
(placement)

2. How is a block is found if it is in the cache 
(identification)

3. Which block should be replaced on a 
miss (replacement)

4. What happens on a write (write strategy)

Copyright © 2012, Elsevier Inc. All rights reserved.
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Cache Organization: Placement
1 Direct mapped cache: A block can be placed in only one 

location (cache block frame), given by the mapping 
function:

index=  (Block address)  MOD  (Number of blocks in 
cache)

2 Fully associative cache: A block can be placed anywhere 
in cache. (no mapping function).

3 Set associative cache: A block can be placed in a 
restricted set of places, or cache block frames.   A set is a 
group of block frames in the cache.   A block is first 
mapped onto the set and then it can be placed anywhere 
within the set.   The set in this case is chosen by:

index =  (Block address)  MOD  (Number of sets in 
cache)
If there are  n blocks in a set the cache placement is called  
n-way set-associative.
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Cache Miss

 Compulsory: The very first access to a 
block is always a miss– Occurs even if you 
have an infinite cache

 Capacity: The cache is not big enough to 
hold all the blocks required for the 
execution of the program– A bigger cache 
helps

 Conflict: If not a fully associative, a block 
may be discarded and brought back again.

Copyright © 2012, Elsevier Inc. All rights reserved.
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Cache Organization: Placement

 Direct mapped Cache
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Placement: DM

2 0 1 0

B y te

o f fs e t

V a l id T a g D a taIn d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

In d e x

H it D a ta

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0
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Each block = one word
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Mapping function:

Cache Block frame number =

(Block address) MOD (1024)

i.e. index field or 

10 low bit of block address

Block offset 

=  2 bits

Block Address  = 30 bits 

Tag  =  20 bits Index  = 10 bits

Byte address
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Cache Organization
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Cache Organization

 Each block frame in cache has an address tag.

 The tags of every cache block that might contain the required 
data are checked in parallel.

 A valid bit is added to the tag to indicate whether this entry 
contains a valid address.

 The address from the CPU to cache is divided into:
 A block address, further divided into:

 An index field to choose  a block set in cache.

 (no index field when fully associative).

 A tag field to search and match addresses in the selected set.

 A block offset to select the data from the block.

Block Address Block

OffsetTag Index
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Cache Organization

Block Address Block

OffsetTag Index

Block offset size = log2(block size)

Index size = log2(Total number of blocks/associativity)

Tag size = address size - index size - offset size

Physical Memory Address Generated by CPU

Mapping function:

Cache set or block frame number =   Index  =  

=  (Block Address) MOD (Number of Sets)

Number of Sets
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Set Associative: 4KB 4Way
Address
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Block Address  =  30 bits 
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Block offset 
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Mapping Function:     Cache Set Number = index= (Block address) MOD (256)
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Miss Rate

 Associativity: 2-way 4-way 8-way

 Size LRU Random LRU    Random LRU Random

 16 KB 5.18% 5.69% 4.67%    5.29% 4.39% 4.96%

 64 KB 1.88% 2.01% 1.54%    1.66% 1.39% 1.53%

 256 KB 1.15% 1.17% 1.13%    1.13% 1.12% 1.12%
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Cache Performance

 CPUtime =   Instruction count x  CPI  x  Clock cycle time

 CPIexecution =   CPI with ideal memory

 CPI =    CPIexecution +   Mem Stall cycles per instruction 

 Mem Stall cycles per instruction =  

Mem accesses per instruction  x   Miss rate x  Miss penalty

 CPUtime =  Instruction Count x   (CPIexecution +  

Mem Stall  cycles per instruction)    x   Clock cycle time

 CPUtime =  IC x  (CPIexecution +  Mem accesses per instruction  x                            
Miss rate x Miss penalty)  x   Clock cycle time

 Misses per instruction =  Memory accesses per instruction  x  Miss rate

 CPUtime =  IC x (CPIexecution + Misses per instruction  x  Miss penalty) x  

Clock cycle time
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Cache Performance

 Assuming the following execution and cache parameters:
 Cache miss penalty =  50 cycles

 Normal instruction execution CPI ignoring memory stalls  =  2.0 
cycles

 Miss rate  = 2%

 Average memory references/instruction  =  1.33

 CPU time  =  IC x [CPI execution  +  Memory accesses/instruction 
x Miss rate  x                                                                            Miss 
penalty ]  x  Clock cycle time 

 CPUtime with cache  =  IC  x  (2.0 + (1.33 x 2% x 50)) x  clock 
cycle time

 =  IC  x  3.33  x  Clock cycle time

 Lower CPI execution increases the impact of cache miss clock 
cycles
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Cache Performance
 Suppose a CPU executes at Clock Rate = 200 MHz (5 ns per cycle) 

with a single level of cache.

 CPIexecution =  1.1

 Instruction mix:   50% arith/logic,  30% load/store, 20% control

 Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

 CPI =   CPIexecution +   mem stalls per instruction

 Mem Stalls per instruction =  

 Mem accesses per instruction  x  Miss rate x Miss 
penalty

 Mem accesses per instruction =  1  +   .3   =  1.3

 Mem Stalls per instruction  =  1.3 x  .015 x 50  =   0.975

 CPI =  1.1  +  .975 =   2.075

 The ideal memory CPU with no misses is  2.075/1.1 =  1.88 times 
faster 
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Cache Performance
 Suppose for the previous example we double the clock rate to 400 MHZ, 

how much faster is this machine, assuming similar miss rate, instruction 
mix?

 Since memory speed is not changed, the miss penalty takes more CPU 
cycles:

 Miss penalty =  50  x  2  =  100 cycles.

 CPI =  1.1 +  1.3 x .015 x 100 =  1.1 + 1.95 =  3.05 

 Speedup  =    (CPIold x Cold)/ (CPInew x Cnew)

 =   2.075  x 2 /  3.05  =  1.36

 The new machine is only 1.36 times faster rather than 2 

times faster due to the increased effect of cache misses.

 CPUs with higher clock rate, have more cycles per cache miss and more 
memory impact on CPI.
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Cache Performance

 Suppose a CPU uses separate level  one (L1)  caches for  instructions 
and data  (Harvard memory architecture)  with different miss rates for 
instruction and data access:
 CPIexecution =  1.1
 Instruction mix:   50% arith/logic,  30% load/store, 20% control
 Assume a cache miss rate of  0.5% for instruction fetch and a cache data 

miss rate of  6%. 
 A cache hit incurs no stall cycles while a cache miss incurs 200 stall cycles 

for both memory reads and writes.         Find the resulting CPI using this 
cache?   How much faster is the CPU with ideal memory?

CPI =   CPIexecution +   mem stalls per instruction

Mem Stall  cycles per instruction =     Instruction Fetch Miss rate x Miss Penalty  +
Data Memory Accesses Per Instruction x  Data Miss Rate x  Miss Penalty

Mem Stall  cycles per instruction =    1 x 0.5/100  x 200   +   0.3 x  6/100  x   200  =   1   +  
3.6  = 4.6

CPI =   CPIexecution +   mem stalls per instruction  =  1.1  + 4.6  =   5.7

The CPU with ideal cache (no misses)  is  5.7/1.1 =  5.18  times faster 
With no cache the CPI would have been  =   1.1  +  1.3 X 200  =  261.1
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Cache Performance
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Write Policy

1 Write Though:  Data is written to both the cache block 
and to a block of main memory.
 The lower level always has the most updated data; an important feature for 

I/O and multiprocessing.
 Easier to implement than write back.
 A write buffer is often used to reduce CPU write stall while data is written to 

memory.

2 Write back:  Data is written or updated only to the cache 
block.  The modified or dirty cache block is written to 
main memory when it’s being replaced from cache.
 Writes occur at the speed of cache
 A status bit called a dirty or modified bit, is used to indicate whether the 

block was modified while in cache; if not the block is not written back to main 
memory when replaced.

 Uses less memory bandwidth than write through.
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Write Policy

Write Allocate:

The cache block is loaded on a write miss 
followed by write hit actions.

No-Write Allocate:
The block is modified in the lower level (lower 

cache level, or main 

memory) and not loaded into cache.


