LRU

= A list to keep track of the order of access
to every block in the set.

= The least recently used block is replaced
(if needed).

= How many bits we need for that?

Pseudo LRU

Psuedo LRU
RN

Psuedo LRU

\\L\!\Hl L

HCDGEBA HCDGEBF

Example

= Which has a lower miss rate 16KB cache for both
instruction or data, or a combined 32KB cache?
(0.64%, 6.47%, 1.99%).

= Assume hit=1cycle and miss =50 cycles. 75% of
memory references are instruction fetch. (e oS

= Miss rate of split
cache=0.75*0.64%+0.25*6.47%=2.1%

= Slightly worse than 1.99% for combined cache. But,
what about average memory access time?

= Split cache: 75%(1+0.64%*50)+25%(1+6.47%*50) =
2.05 cycles.

Extra cycle for load/store

]

s Combined cache:
75%(1+1.99%*50)+25%(1+1+1.99%*50) = 2.24
—_— i s i’

Example

= A CPUwith CPlgecuion = 1.1 Mem accesses per instruction = 1.3

Uses a unified L1 Write Through, No Write Allocate, with:
= No write buffer.

= Perfect Write buffer
= A realistic write buffer that eliminates 85% of write stalls
Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
CPl = CPlgeciion ¥ mem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3= 11.5%

Example

s A CPU with CPlgecuion = 1.1 uses a unified L1 with
write back, with write allocate, and the probability a
cache block is dirty = 10%

= Instruction mix: 50% arith/logic, 15% load, 15%
store, 20% control

= Assume a cache miss rate of 1.5% and a miss penalty 0
of Qo‘c-y;:les. N’é/ “ast 3 %_\6
-3 \ 3« 50\,0.7-}'-3“0'\"'0"}

N o6

Example

s CPU with CPlgecuion = 1.1 running at clock rate = 500 MHz

= 1.3 memory accesses per instruction.

= L, cache operates at 500 MHz with a miss rate of 5%

= L, cache operates at 250 MHz with local miss rate 40%, (T, =2
cycles)

= Memory access penalty, M =100 cycles. Find CPI.

)3 (s, #8245 x0-wvied)

\NOo \oo

Example

s CPU with CPl cuiion = 1.1 running at clock rate = 500 MHz
= 1.3 memory accesses per instruction.
= Forl;:

Cache operates at 500 MHz with a miss rate of 1-H1 = 5%
Write though to L, with perfect write buffer with write allocate

= ForlL,:

Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T, = 2 cycles)
Write back to main memory with write allocate

Probability a cache block is dirty = 10%
= Memory ccess(fenalty, M =100 cycles. Find CPL.

0.05 fo N y)L A OL\- YO“’V\OC
Loou w0 1708

Example

s CPU with CPlgecuion = 1.1 running at clock rate = 500 MHz

= 1.3 memory accesses per instruction.

= L, cache operates at 500 MHz with a miss rate of 5%

= L, cache operates at 250 MHz with a local miss rate 40%, (T, =
2 cycles)

= L, cache operates at 100 MHz with a local miss rate 50%, (T;=
5 cycles)

= Memory access penalty, M= 100 cycles. Find CPI.

1w

Memory Hierarchy Basics

uononpo.|

= Six basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty
= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption
= Higher number of cache levels
= Reduces overall memory access time
= Giving priority to read misses over writes
= Reduces miss penalty
= Avoiding address translation in cache indexing
=« Reduces hit time

Ten Advanced Optimizations

Small and simple first level caches
Way Prediction

Pipelined caches

Non-blocking cache

Multibanked cache

Critical word first

Merging write buffer

Compiler optimization

Hardware prefetching

Compiler prefetching

suoneziwndo pasueApy

Small and Simple

No mux in the critical path of a direct mapped
cache.

Bigger cache means more energy.
CACTI — An idea for the project/paper review

Many processors takes at least 2 clock cycles to
access the cache, longer hit time may not be that
critical

The use of a virtual index cache, limits the cache
size to page size x associativity (recently a trend
to increase associativity).

L1 Size and Associativity

800+

700+

suoneziwndo pasueApy

600+

500+

400+

300+

Access time in picrosecornds

200+

100+

16KB 32KB 64 KB 128KB 256 KB
Cache size

Access time vs. size and associativity

L1 Size and Associativity

0.5
W 1-way O 2-way
0.45 | W 4-way @ 8-way

0.4 4

0.35

suoneziwundo pasueApy

0.3

0.25

0.2+

0.15+

Energy per read in hano joules

0.1+

0.05 4

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity

Way Prediction

= To improve hit time, predict the way to pre-set
mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= I-cache has better accuracy than D-cache
= First used on MIPS R10000 in mid-90s

s Used on ARM Cortex-A8

» Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty

suoneziwndo pasueApy

Pipelining Cache

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium Ill: 2 cycles
= Pentium 4 — Core i7: 4 cycles

= Increases branch miss-prediction penalty (longer
pipeline).
= Makes it easier to increase associativity

suoneziwundo pasueApy

Nonblocking Caches

= For out-of-order
execution (later on
this point).
= Allow hits before
previous misses
complete
= “Hit under miss”

= “Hit under multiple
miss”

= L2 must support this

= In general,
processors can hide
L1 miss penalty but
not L2 miss penalty

Ratio of cacha miss penalty

e el \ s |
A \

6% e r{l t-""'---._
o aas N N

welon | R
)\ | A\
Iy \

Single core i7 using SPEC2006

suoneziwndo pasueApy

Multibanked Caches

= Organize cache as independent banks to
support simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

= Interleave banks according to block address

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2
0 1 2 3
4 5 6 7
8 9 10 11

12 13

14 15

address Bank 3

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

suoneziwundo pasueApy

Critical Word First, Early Restart

» Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
n Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives

suoneziwndo pasueApy

n Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/O addresses

Write address W

suoneziwundo pasueApy

v

v
100 1 | Mem{100] [0 0 o
bl I ’ ’ No write
16 1 | Mem{118] [o L] o .
ol . . buffering
n
Write address WV v v v
100 1| Mem{100] | 1 | Mam[108] [1 | Mem[118] | 1 Mmmq.
; ; ; ; i Write buffering

Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order (row major access)

= Blocking
= Instead of accessing entire rows or columns,
subdivide matrices into blocks
= Requires more memory accesses but improves
locality of accesses

suoneziwndo pasueApy

Hardware Prefetching

» Fetch two blocks on miss (include next
sequential block) (the 2" one goes to
instruction stream buffer, must be checked if
found do not go to cache).

220

1.97

»
N

Performance improvement

1.18 1.20 121

gap mcl fam3d wupwise galgel fecerec swim applu lucas mgid equake
SPECiNtz000 SPECIp2000

Pentium 4 Pre-fetching

suoneziwundo pasueApy

Compiler Prefetching

» Insert prefetch instructions before data is
needed

= Non-faulting: prefetch doesn’t cause
exceptions

suoneziwndo pasueApy

» Register prefetch

= Loads data into register
n Cache prefetch

» Loads data into cache

= Combine with loop unrolling and software
pipelining

Summary

Hit Band- Miss Miss Power Hardware cost/

suoneziwundo pasueApy

Technique time width penalty rate consumption complexity Comment

Small and simple + - +* 1] Trivial; widely used

waches

Way-predicting caches - | Used in Pentium 4

Pipelined cache secess - + 1 Wadely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in 1.2 of hoth i7 and
Conex-A8

Critical word first + 2 Widely used

and early restan

Merging write buffer + 1 Widely used with write
through

Compiler technigques 1o + ir Software is a challenge, but

reduce ciche misses many compilers handle
common linear algebra
calculations

Hardware prefetching +* + - 2imsir, Mot provide prefeich

of instructions and data Jdma instructions: modern high-
end processors also
autommtically prefetch in
hardware.

Compiler-conirolled + + 3 Needs nonblocking cache:

prefetching possible instruction everhead:

in many CPLs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
Although g Iy a technique helps only one factor, prefetching can reduce misses if

am
daone sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

