LRU

= A list to keep track of the order of access
to every block in the set.

= The least recently used block is replaced
(if needed).

= How many bits we need for that?

Pseudo LRU
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Example

= Which has a lower miss rate 16KB cache for both
instruction or data, or a combined 32KB cache?
(0.64%, 6.47%, 1.99%).

= Assume hit=1cycle and miss =50 cycles. 75% of
memory references are instruction fetch. (e oS

= Miss rate of split
cache=0.75*0.64%+0.25*6.47%=2.1%

= Slightly worse than 1.99% for combined cache. But,
what about average memory access time?

= Split cache: 75%(1+0.64%*50)+25%(1+6.47%*50) =
2.05 cycles.

Extra cycle for load/store

]

s Combined cache:
75%(1+1.99%*50)+25%(1+1+1.99%*50) = 2.24
—_— i s i’




Example

= A CPUwith CPlgecuion = 1.1 Mem accesses per instruction = 1.3

Uses a unified L1 Write Through, No Write Allocate, with:
= No write buffer.

= Perfect Write buffer
= A realistic write buffer that eliminates 85% of write stalls
Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.
CPl = CPlgeciion ¥ mem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3= 11.5%

Example

s A CPU with CPlgecuion = 1.1 uses a unified L1 with
write back, with write allocate, and the probability a
cache block is dirty = 10%

= Instruction mix: 50% arith/logic, 15% load, 15%
store, 20% control

= Assume a cache miss rate of 1.5% and a miss penalty 0
of Qo‘c-y;:les. N’é/ “ast 3 %_\6
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Example

s CPU with CPlgecuion = 1.1 running at clock rate = 500 MHz

= 1.3 memory accesses per instruction.

= L, cache operates at 500 MHz with a miss rate of 5%

= L, cache operates at 250 MHz with local miss rate 40%, (T, =2
cycles)

= Memory access penalty, M =100 cycles. Find CPI.

)3 (s, #8245 x0-wvied)
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Example

s CPU with CPl cuiion = 1.1 running at clock rate = 500 MHz
= 1.3 memory accesses per instruction.
= Forl;:

Cache operates at 500 MHz with a miss rate of 1-H1 = 5%
Write though to L, with perfect write buffer with write allocate

= ForlL,:

Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T, = 2 cycles)
Write back to main memory with write allocate

Probability a cache block is dirty = 10%
= Memory ccess(fenalty, M =100 cycles. Find CPL.

0.05 fo N y )L A OL\- YO“’V\OC
Loou w0 1708




Example

s CPU with CPlgecuion = 1.1 running at clock rate = 500 MHz

= 1.3 memory accesses per instruction.

= L, cache operates at 500 MHz with a miss rate of 5%

= L, cache operates at 250 MHz with a local miss rate 40%, (T, =
2 cycles)

= L, cache operates at 100 MHz with a local miss rate 50%, (T;=
5 cycles)

= Memory access penalty, M= 100 cycles. Find CPI.

1w

Memory Hierarchy Basics

uononpo.|

= Six basic cache optimizations:

= Larger block size
= Reduces compulsory misses
= Increases capacity and conflict misses, increases miss penalty
= Larger total cache capacity to reduce miss rate
= Increases hit time, increases power consumption
= Higher associativity
= Reduces conflict misses
= Increases hit time, increases power consumption
= Higher number of cache levels
= Reduces overall memory access time
= Giving priority to read misses over writes
= Reduces miss penalty
= Avoiding address translation in cache indexing
=« Reduces hit time




Ten Advanced Optimizations

Small and simple first level caches
Way Prediction

Pipelined caches

Non-blocking cache

Multibanked cache

Critical word first

Merging write buffer

Compiler optimization

Hardware prefetching

Compiler prefetching
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Small and Simple

No mux in the critical path of a direct mapped
cache.

Bigger cache means more energy.
CACTI — An idea for the project/paper review

Many processors takes at least 2 clock cycles to
access the cache, longer hit time may not be that
critical

The use of a virtual index cache, limits the cache
size to page size x associativity (recently a trend
to increase associativity).




L1 Size and Associativity

800+

700+
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600+

500+

400+

300+

Access time in picrosecornds

200+

100+

16KB 32KB 64 KB 128KB 256 KB
Cache size

Access time vs. size and associativity

L1 Size and Associativity

0.5
W 1-way O 2-way
0.45 | W 4-way @ 8-way

0.4 4
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0.3

0.25

0.2+

0.15+

Energy per read in hano joules

0.1+

0.05 4

16 KB 32 KB 64 KB 128 KB 256 KB
Cache size

Energy per read vs. size and associativity




Way Prediction

= To improve hit time, predict the way to pre-set
mux
= Mis-prediction gives longer hit time
= Prediction accuracy
= > 90% for two-way
= > 80% for four-way
= I-cache has better accuracy than D-cache
= First used on MIPS R10000 in mid-90s

s Used on ARM Cortex-A8

» Extend to predict block as well
= “Way selection”
= Increases mis-prediction penalty
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Pipelining Cache

= Pipeline cache access to improve bandwidth

= Examples:
= Pentium: 1 cycle
= Pentium Pro — Pentium Ill: 2 cycles
= Pentium 4 — Core i7: 4 cycles

= Increases branch miss-prediction penalty (longer
pipeline).
= Makes it easier to increase associativity

suoneziwundo pasueApy




Nonblocking Caches

= For out-of-order
execution (later on
this point).
= Allow hits before
previous misses
complete
= “Hit under miss”

= “Hit under multiple
miss”

= L2 must support this

= In general,
processors can hide
L1 miss penalty but
not L2 miss penalty

Ratio of cacha miss penalty
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Single core i7 using SPEC2006
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Multibanked Caches

= Organize cache as independent banks to
support simultaneous access

= ARM Cortex-A8 supports 1-4 banks for L2
= Intel i7 supports 4 banks for L1 and 8 banks for L2

= Interleave banks according to block address

Block Block Block Block
address  Bank 0 address  Bank 1 address Bank 2
0 1 2 3
4 5 6 7
8 9 10 11

12 13

14 15

address  Bank 3

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.
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Critical Word First, Early Restart

» Critical word first

= Request missed word from memory first

= Send it to the processor as soon as it arrives
n Early restart

= Request words in normal order

= Send missed work to the processor as soon as it
arrives
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n Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

Merging Write Buffer

= When storing to a block that is already pending in the
write buffer, update write buffer

s Reduces stalls due to full write buffer
= Do not apply to I/O addresses

Write address W
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v

v
100 1 | Mem{100] [ 0 0 o
bl I ’ ’ No write
16 1 | Mem{118] [ o L] o .
ol . . buffering
n
Write address WV v v v
100 1| Mem{100] | 1 | Mam[108] [ 1 | Mem[118] | 1 Mmmq.
; ; ; ; i Write buffering




Compiler Optimizations

= Loop Interchange

= Swap nested loops to access memory in
sequential order (row major access)

= Blocking
= Instead of accessing entire rows or columns,
subdivide matrices into blocks
= Requires more memory accesses but improves
locality of accesses
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Hardware Prefetching

» Fetch two blocks on miss (include next
sequential block) (the 2" one goes to
instruction stream buffer, must be checked if
found do not go to cache).

220

1.97

»
N

Performance improvement

1.18 1.20 121

gap  mcl  fam3d wupwise galgel fecerec swim  applu  lucas  mgid  equake
SPECiNtz000 SPECIp2000

Pentium 4 Pre-fetching
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Compiler Prefetching

» Insert prefetch instructions before data is
needed

= Non-faulting: prefetch doesn’t cause
exceptions
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» Register prefetch

= Loads data into register
n Cache prefetch

» Loads data into cache

= Combine with loop unrolling and software
pipelining

Summary

Hit  Band-  Miss  Miss Power  Hardware cost/
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Technique time width penalty rate consumption  complexity Comment

Small and simple + - +* 1] Trivial; widely used

waches

Way-predicting caches - | Used in Pentium 4

Pipelined cache secess - + 1 Wadely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in 1.2 of hoth i7 and
Conex-A8

Critical word first + 2 Widely used

and early restan

Merging write buffer + 1 Widely used with write
through

Compiler technigques 1o + ir Software is a challenge, but

reduce ciche misses many compilers handle
common linear algebra
calculations

Hardware prefetching +* + - 2imsir, Mot provide prefeich

of instructions and data Jdma instructions: modern high-
end processors also
autommtically prefetch in
hardware.

Compiler-conirolled + + 3 Needs nonblocking cache:

prefetching possible instruction everhead:

in many CPLs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
Although g Iy a technique helps only one factor, prefetching can reduce misses if

am
daone sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.




