
27

LRU

 A list to keep track of the order of access
to every block in the set.

 The least recently used block is replaced
(if needed).

 How many bits we need for that?

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Pseudo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H A B C D E F G H

H
H C

29

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D

A B C D E F G H

H C D G

30

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E

A B C D E F G H

H C D G E B

31

Psuedo LRU

Copyright © 2012, Elsevier Inc. All rights reserved.

A B C D E F G H

H C D G E B A

A B C D E F G H

H C D G E B F

32

Example
 Which has a lower miss rate 16KB cache for both

instruction or data, or a combined 32KB cache?
(0.64%, 6.47%, 1.99%).

 Assume hit=1cycle and miss =50 cycles. 75% of
memory references are instruction fetch.

 Miss rate of split
cache=0.75*0.64%+0.25*6.47%=2.1%

 Slightly worse than 1.99% for combined cache. But,
what about average memory access time?

 Split cache: 75%(1+0.64%*50)+25%(1+6.47%*50) =
2.05 cycles.

 Combined cache:
75%(1+1.99%*50)+25%(1+1+1.99%*50) = 2.24

Extra cycle for load/store

33

Example
 A CPU with CPIexecution = 1.1 Mem accesses per instruction = 1.3
 Uses a unified L1 Write Through, No Write Allocate, with:

 No write buffer.
 Perfect Write buffer
 A realistic write buffer that eliminates 85% of write stalls

 Instruction mix: 50% arith/logic, 15% load, 15% store, 20% control
 Assume a cache miss rate of 1.5% and a miss penalty of 50 cycles.

CPI = CPIexecution + mem stalls per instruction
% reads = 1.15/1.3 = 88.5% % writes = .15/1.3 = 11.5%

34

Example

 A CPU with CPIexecution = 1.1 uses a unified L1 with
write back, with write allocate, and the probability a
cache block is dirty = 10%

 Instruction mix: 50% arith/logic, 15% load, 15%
store, 20% control

 Assume a cache miss rate of 1.5% and a miss penalty
of 50 cycles.

35

Example

 CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
 1.3 memory accesses per instruction.
 L1 cache operates at 500 MHz with a miss rate of 5%
 L2 cache operates at 250 MHz with local miss rate 40%, (T2 = 2

cycles)

 Memory access penalty, M = 100 cycles. Find CPI.

36

Example

 CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
 1.3 memory accesses per instruction.
 For L1 :

 Cache operates at 500 MHz with a miss rate of 1-H1 = 5%
 Write though to L2 with perfect write buffer with write allocate

 For L2:
 Cache operates at 250 MHz with local miss rate 1- H2 = 40%, (T2 = 2 cycles)
 Write back to main memory with write allocate

 Probability a cache block is dirty = 10%

 Memory access penalty, M = 100 cycles. Find CPI.

37

Example

 CPU with CPIexecution = 1.1 running at clock rate = 500 MHz
 1.3 memory accesses per instruction.
 L1 cache operates at 500 MHz with a miss rate of 5%
 L2 cache operates at 250 MHz with a local miss rate 40%, (T2 =

2 cycles)
 L3 cache operates at 100 MHz with a local miss rate 50%, (T3 =

5 cycles)
 Memory access penalty, M= 100 cycles. Find CPI.

38Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Hierarchy Basics

 Six basic cache optimizations:
 Larger block size

 Reduces compulsory misses
 Increases capacity and conflict misses, increases miss penalty

 Larger total cache capacity to reduce miss rate
 Increases hit time, increases power consumption

 Higher associativity
 Reduces conflict misses
 Increases hit time, increases power consumption

 Higher number of cache levels
 Reduces overall memory access time

 Giving priority to read misses over writes
 Reduces miss penalty

 Avoiding address translation in cache indexing
 Reduces hit time

Introduction

39Copyright © 2012, Elsevier Inc. All rights reserved.

Ten Advanced Optimizations

 Small and simple first level caches
 Way Prediction
 Pipelined caches
 Non-blocking cache
 Multibanked cache
 Critical word first
 Merging write buffer
 Compiler optimization
 Hardware prefetching
 Compiler prefetching

A
dvanced O

ptim
izations

40

Small and Simple

 No mux in the critical path of a direct mapped
cache.

 Bigger cache means more energy.

 CACTI – An idea for the project/paper review

 Many processors takes at least 2 clock cycles to
access the cache, longer hit time may not be that
critical

 The use of a virtual index cache, limits the cache
size to page size  associativity (recently a trend
to increase associativity).

Copyright © 2012, Elsevier Inc. All rights reserved.

41Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Access time vs. size and associativity

A
dvanced O

ptim
izations

42Copyright © 2012, Elsevier Inc. All rights reserved.

L1 Size and Associativity

Energy per read vs. size and associativity

A
dvanced O

ptim
izations

43Copyright © 2012, Elsevier Inc. All rights reserved.

Way Prediction

 To improve hit time, predict the way to pre-set
mux
 Mis-prediction gives longer hit time
 Prediction accuracy

 > 90% for two-way
 > 80% for four-way
 I-cache has better accuracy than D-cache

 First used on MIPS R10000 in mid-90s
 Used on ARM Cortex-A8

 Extend to predict block as well
 “Way selection”
 Increases mis-prediction penalty

A
dvanced O

ptim
izations

44Copyright © 2012, Elsevier Inc. All rights reserved.

Pipelining Cache

 Pipeline cache access to improve bandwidth
 Examples:

 Pentium: 1 cycle
 Pentium Pro – Pentium III: 2 cycles
 Pentium 4 – Core i7: 4 cycles

 Increases branch miss-prediction penalty (longer
pipeline).

 Makes it easier to increase associativity

A
dvanced O

ptim
izations

45Copyright © 2012, Elsevier Inc. All rights reserved.

Nonblocking Caches

 For out-of-order
execution (later on
this point).

 Allow hits before
previous misses
complete
 “Hit under miss”
 “Hit under multiple

miss”

 L2 must support this
 In general,

processors can hide
L1 miss penalty but
not L2 miss penalty

A
dvanced O

ptim
izations

Single core i7 using SPEC2006

46Copyright © 2012, Elsevier Inc. All rights reserved.

Multibanked Caches

 Organize cache as independent banks to
support simultaneous access
 ARM Cortex-A8 supports 1-4 banks for L2
 Intel i7 supports 4 banks for L1 and 8 banks for L2

 Interleave banks according to block address

A
dvanced O

ptim
izations

47Copyright © 2012, Elsevier Inc. All rights reserved.

Critical Word First, Early Restart

 Critical word first
 Request missed word from memory first
 Send it to the processor as soon as it arrives

 Early restart
 Request words in normal order
 Send missed work to the processor as soon as it

arrives

 Effectiveness of these strategies depends on
block size and likelihood of another access to
the portion of the block that has not yet been
fetched

A
dvanced O

ptim
izations

48Copyright © 2012, Elsevier Inc. All rights reserved.

Merging Write Buffer

 When storing to a block that is already pending in the
write buffer, update write buffer

 Reduces stalls due to full write buffer
 Do not apply to I/O addresses

A
dvanced O

ptim
izations

No write
buffering

Write buffering

49Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Optimizations

 Loop Interchange
 Swap nested loops to access memory in

sequential order (row major access)

 Blocking
 Instead of accessing entire rows or columns,

subdivide matrices into blocks
 Requires more memory accesses but improves

locality of accesses

A
dvanced O

ptim
izations

50Copyright © 2012, Elsevier Inc. All rights reserved.

Hardware Prefetching

 Fetch two blocks on miss (include next
sequential block) (the 2nd one goes to
instruction stream buffer, must be checked if
found do not go to cache).

A
dvanced O

ptim
izations

Pentium 4 Pre-fetching

51Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Prefetching

 Insert prefetch instructions before data is
needed

 Non-faulting: prefetch doesn’t cause
exceptions

 Register prefetch
 Loads data into register

 Cache prefetch
 Loads data into cache

 Combine with loop unrolling and software
pipelining

A
dvanced O

ptim
izations

52Copyright © 2012, Elsevier Inc. All rights reserved.

Summary

A
dvanced O

ptim
izations

