

Branch Prediction

- Dynamic scheduling deals with data dependence improving, the limiting factor is the control dependence.
- Branch prediction is important for processors that maintains a CPI of 1, but it is crucial for processors who tries to issue more than one instruction per cycle (CPI < 1).
- We have already studied some techniques (delayed branch, predict not taken), but these do not depend on the dynamic behavior of the code.

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

36

Branch History Table

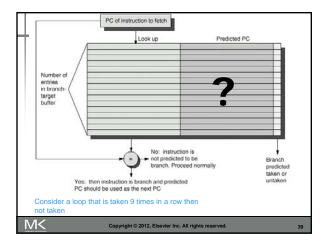
- A small memory indexed by the lower portion of the address of the branch instruction.
- The memory contains only 1-bit, to predict taken or untaken
- If the prediction is incorrect, the prediction bit is inverted.
- In a loop, it mispredicts twice
 - End of loop case, when it exits instead of looping as before
 - First time through loop on next time through code, when it predicts exit instead of looping

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

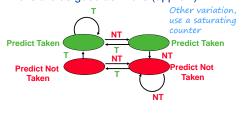
37

-		
-		
-		
-		
-		
-		
-		
-		
-		
-		
-		


1-Bit Predictor

- 1-Bit bimodal predictor
- Consider the following example
- for(i=0;i<10;i++) {</pre>
 -
- }

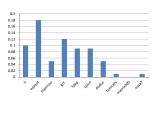
M<


Copyright © 2012, Elsevier Inc. All rights reserved.

20

2-Bit Predictor

- Uses 2 bits to add some hysteresis to the prediction – Compare with 1 bit?
- 2 bits are as good as N bits (approx.)


M<

Copyright © 2012, Elsevier Inc. All rights reserved.

40

2-bit Predictor

• 4096 entries 2-bit predictor miss rate

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

Correlating Branch Predictors

```
DSUBUI R3, R1, #2
if (aa==2)
                    BNEZ
                             R3, L1
 aa=0;
                    DADD
                             R1, R0, R0 ; aa==0
               L1: DSUBUI R3, R1, #2
if (bb==2)
                    BNEZ
                             R3, L2
                                      ; b2 (bb!=2)
 bb=0;
                             R2, R0, R0 ; bb==0
if (aa!==bb){ L2: DSUBUI R3, R1, R2 ; R3=aa-bb
                  ➤ BEQZ
                             R3, L3
```

If the condition is true \rightarrow (B1,B2) branch NOT TAKEN

If the condition is true → B3 NOT taken

If B1 and B2 both NOT TAKEN B3 → TAKEN

There is a correlation between B3 and both B1 and B2

M<

Copyright © 2012, Elsevier Inc. All rights reserved.

Correlating Branch Predictors

- Correlating predictors (two-level predictors) use the behavior of other branches to make prediction.
- Simplest (1-bit) has 2 predictions, one if the last branch is take, the second is when the last branch is not taken
- The prediction is on the form NT/T

M<

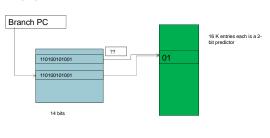
Copyright © 2012, Elsevier Inc. All rights reserved.

43

Exa	nple					
B1 if (d==0) d=1; B2 if (d==1) {		BNEZ DADD L1: DADD BNEZ L2:	R1, L1 ; d == 0 ? R1, R0, #1 ; YES d==1 R3, R1, #-1 R3, L2 ; b2 (bb!=2)			
Initial d	d==0?	В1	d befoe b2	d==1	b2	
0	Υ	NO	1	Υ	NO	
1 N		Taken	1	Υ	NO	
2	N	Taken	2	N	Taken	
M<	Co	pyright © 2012, Elsevier I	nc. All rights reserved.		44	4

Example									
lr	nitial d	d==0?	B1	d befo	e b2 d==	:1 B2			
	0	Υ	/NO	1	Υ	NO			
	1	N	Taken	1	Υ	NO			
	2	N /	Taken	2	N	Taken			
d	B1 Pred	B1 action	newB1 pred	B2 pred	B2 action	new B2 pred			
2	NT	T	_T	NT	T	 ─T			
0	Т-	NT	NT	T	NT	NT			
2	NT	Т	Т	NT	Т	Т			
0	Т	NT	NT	T	NT	NT			
Miss on every prediction									
M<		Сору	right © 2012, Els	evier Inc. All rights re	served.	45			

	<u>(am</u>							
Init	ial d	d==	=0?	B1	d be	foe b	2 d=	≔1 b2
0		١	1	NO	1		Υ	NO
1		١	1	Taken	1		Υ	NO
2		١	١	Taken	2		N	Taken
d	b1 Pred		b1 action	newb1 pred	b2 pred		b2 action	new b2 pred
2	NT/N	۲ %	Т	T/NT	NT/NT	%	Т	NT/T
0	T/NT	4	NT	T/NT	NT/T	1	NT	NT/T
2	T/NT	1	Т	T/NT	NT/T	1	Т	NT/T
0	T/NT	4	NT	T/NT	NT/T	4	NT	NT/T
	spredic ly	tion (on first t	ry				

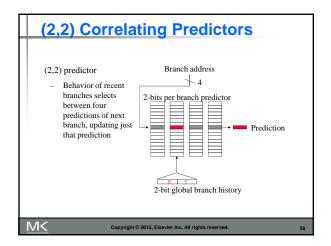

Global Predictor

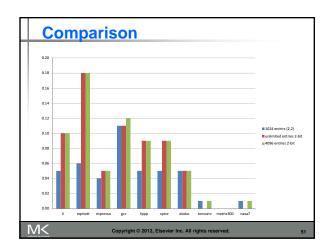
- Take for example 10 bits of the branch PC
- Take 4 bits of global branch history
- Access 2¹⁴ entry table
- Or, you could take the 14 bits of PC XORED with 14 bits of branch history (hashing) to access the same table
- Or any combination

Copyright © 2012, Elsevier Inc. All rights reserved.

Local Predictor

■ The recent history of the branch predicts the next one

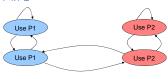

M<


Copyright © 2012, Elsevier Inc. All rights reserved.

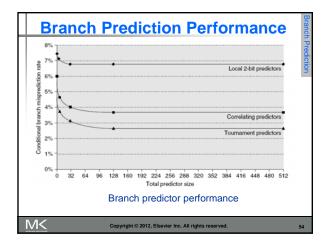
Correlating Predictors

- The 1-bit predictor is called (1,1) predictor.
 It uses one bit for history (last branch), to choose among two (2¹) 1-bit branch predictors.
- In general a predictor could me (m,n) predictor.
 It uses the last m branch to choose among 2m branch predictors each is n-bit predictor.

Copyright © 2012, Elsevier Inc. All rights reserved.



Branch Prediction Basic 2-bit predictor: For each branch: Fredict taken or not taken If the prediction is wrong two consecutive times, change prediction Correlating predictor: Multiple 2-bit predictors for each branch One for each possible combination of outcomes of preceding n branches Local predictor: Multiple 2-bit predictors for each branch One for each possible combination of outcomes for the last n occurrences of this branch


Copyright © 2012, Elsevier Inc. All rights reserved.

Tournament Predictor

- Tournament predictor:
 - Combine correlating predictor with local predictor
 - A selector is sued to decide which one of these to use
- The selector could be similar to a 2-bit predictor
 - A saturating 2-bit binary counter with 2 outcomes P1/P2

Copyright © 2012, Elsevier Inc. All rights reserved.

Alpha 21264 Branch Predictor

- Tournament predictor using, 4K 2-bit counters indexed by local branch address.
- Global predictor
 - 4K entries index by history of last 12 branches (2¹² = 4K)
 - Each entry is a standard 2-bit predictor
- Local predictor

 - Local history table: 1024 10-bit entries recording last 10 branches, index by branch address
 The pattern of the last 10 occurrences of that particular branch used to index table of 1K entries with 3-bit saturating counters

M<

Copyright © 2012, Elsevier Inc. All rights reserved.