
10Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

11Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

12

VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0

Copyright © 2012, Elsevier Inc. All rights reserved.

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

13

VLIW Example

 Assume that w can schedule 2 memory
operations, 2 FP operations, and one integer or
branch

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9

14Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

15Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given class
that can be issued in a “bundle”
 I.e. one FP, one integer, one load, one store

 Examine all the dependencies among the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

16Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

20Copyright © 2012, Elsevier Inc. All rights reserved.

From: Tullsen, Eggers, and
Levy,

“Simultaneous Multithreading:
Maximizing On-chip
Parallelism, ISCA 1995.

21

Thread Level parallelism

 Multithreading: multiple threads to share the functional
units of 1 processor via overlapping
 processor must duplicate independent state of each thread e.g.,

a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

 memory shared through the virtual memory mechanisms, which
already support multiple processes

 HW for fast thread switch; much faster than full process switch
100s to 1000s of clocks

 When to switch?
 Alternate instruction per thread (fine grain)

 When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Copyright © 2012, Elsevier Inc. All rights reserved.

22

Fine-Grained Multithreading
 Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

 Usually done in a round-robin fashion, skipping
any stalled threads

 CPU must be able to switch threads every clock
 Advantage is it can hide both short and long

stalls, since instructions from other threads
executed when one thread stalls

 Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

 Used on Sun’s T1

Copyright © 2012, Elsevier Inc. All rights reserved.

23

Coarse-Grained Multithreading

 Switches threads only on costly stalls, such as L2 cache
misses

 Advantages
 Need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from

other threads issued only when the thread encounters
a costly stall

 Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a

stall occurs, the pipeline must be emptied or frozen
 New thread must fill pipeline before instructions can

complete
 Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Copyright © 2012, Elsevier Inc. All rights reserved.

24

Simultanuous Multithreading SMT

 Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

 Multiple instructions from different threads.

Copyright © 2012, Elsevier Inc. All rights reserved.

25

SMT

Copyright © 2012, Elsevier Inc. All rights reserved.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

One thread, 8 Units Two threads, 8 Units

26

Multithreading

Copyright © 2012, Elsevier Inc. All rights reserved.

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

27

Sun T1

 Focused on TLP rather than ILP

 Fine-grained multithreading

 8 cores, 4 threads per core, one shared FP unit.

 6-stage pipeline (similar to MIPS with one stage
for thread switching)

 L1 caches: 16KB I, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

 L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Sun T1

 Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1 I miss
rate

L1 D miss
rate

L2 miss
rate

L1 I miss
latency

L1 D miss
latency

L2 miss
latency

29

Sun T1

 Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen – The core stalls only if all the 4
threads are not ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Not ready

Ready

Executing

30

Sun t1

 Breakdown of the causes for a thread being not
ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

31

The ARM Cortex-A8

 Dual issue processor 13-stage pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

32

The ARM Cortex-A8

 Five stage instruction decode

Copyright © 2012, Elsevier Inc. All rights reserved.

33

ARM Cortex-A8

 Execution Pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

34Copyright © 2012, Elsevier Inc. All rights reserved.

 Need high instruction bandwidth!
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch-Target Buffer

35Copyright © 2012, Elsevier Inc. All rights reserved.

 Optimization:
 Larger branch-target buffer

 Add target instruction into buffer to deal with longer
decoding time required by larger buffer

 “Branch folding”

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch Folding

36Copyright © 2012, Elsevier Inc. All rights reserved.

 Most unconditional branches come from
function returns

 The same procedure can be called from
multiple sites
 Causes the buffer to potentially forget about the

return address from previous calls

 Create return address buffer organized as a
stack

A
dv. Techniques for Instruction D

elivery and S
peculation

Return Address Predictor

37Copyright © 2012, Elsevier Inc. All rights reserved.

 Design monolithic unit that performs:
 Branch prediction

 Instruction prefetch
 Fetch ahead

 Instruction memory access and buffering
 Deal with crossing cache lines

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Instruction Fetch Unit

38Copyright © 2012, Elsevier Inc. All rights reserved.

 Register renaming vs. reorder buffers
 Instead of virtual registers from reservation stations and

reorder buffer, create a single register pool
 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue

 WAW and WAR hazards are avoided

 Speculation recovery occurs by copying during commit

 Still need a ROB-like queue to update table in order

 Simplifies commit:
 Record that mapping between architectural register and physical register

is no longer speculative

 Free up physical register used to hold older value

 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

A
dv. Techniques for Instruction D

elivery and S
peculation

Register Renaming

39Copyright © 2012, Elsevier Inc. All rights reserved.

 Combining instruction issue with register
renaming:
 Issue logic pre-reserves enough physical registers

for the bundle (fixed number?)

 Issue logic finds dependencies within bundle, maps
registers as necessary

 Issue logic finds dependencies between current
bundle and already in-flight bundles, maps registers
as necessary

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Issue and Renaming

40Copyright © 2012, Elsevier Inc. All rights reserved.

 How much to speculate
 Mis-speculation degrades performance and power

relative to no speculation
 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher
costing misses (e.g. L2)

 Speculating through multiple branches
 Complicates speculation recovery

 No processor can resolve multiple branches per
cycle

A
dv. Techniques for Instruction D

elivery and S
peculation

How Much?

41Copyright © 2012, Elsevier Inc. All rights reserved.

 Speculation and energy efficiency
 Note: speculation is only energy efficient when it

significantly improves performance

 Value prediction
 Uses:

 Loads that load from a constant pool

 Instruction that produces a value from a small set of values

 Not been incorporated into modern processors

 Similar idea--address aliasing prediction--is used on
some processors

A
dv. Techniques for Instruction D

elivery and S
peculation

Energy Efficiency

