VLIW Processors

» Package multiple operations into one instruction

s Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references
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= Must be enough parallelism in the code to fill the
available slots

VLIW Processors

» Disadvantages:
» Statically finding parallelism
= Code size
= No hazard detection hardware
= Binary code compatibility
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VLIW Example

= Source instruction  Instruction using result

= FP ALU OP FP ALU OP
= FP ALU OP Store double
= Load double FP ALU OP
= Load Double Store double
Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

3

2
1
0

For (1=1000;1>0;1++)

X[]=x[I]+s;

Latency

VLIW Example

= Assume that w can schedule 2 memory

operations, 2 FP operations, and one integer or

branch

Memory Memory  FP
reference 1 reference 2 operation 1

LD FQ.0(R1) LD F6,-8(R1)
LD F10,-16(R1) . L
LD F18,-32(R1) LD F22,-40(R1) . ADDD P4,FO,F2

LD F26,-48(R1) ADDD F12,F10,F2
ADDD F20,F18,F2
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2

SD -16(R1),F12  SD -24(R1),F16
SD 24(R1),F20  SD 16(R1),F24
SD 8(R1),F28

FP Int. op/  Clock

op. 2 branch

ADDD F8,F6,F2
ADDD F16,F14,F2
ADDD F24,F22,F2

DADD R1,R1,#-56

BNEZ R1,LOOP




Dynamic Scheduling, Multiple Issue, and Speculation

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= Two approaches:

= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock
= Design logic to handle any possible dependencies
between the instructions

= Hybrid approaches
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= Issue logic can become bottleneck

Multiple Issue

Limit the number of instructions of a given class
that can be issued in a “bundle”

= |l.e. one FP, one integer, one load, one store

Examine all the dependencies among the
instructions in the bundle

If dependencies exist in bundle, encode them in
reservation stations
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Also need multiple completion/commit




Example

Loop:

LD R2,0(R1)
DADDIU R2,R2,#1
SD R2,0(R1)
DADDIU R1,R1,#8
BNE R2,R3,LOOP

;R2=array element
;increment R2

;store result

;increment pointer
;branch if not last element
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Thread Level parallelism

= Multithreading: multiple threads to share the functional
units of 1 processor via overlapping

= processor must duplicate independent state of each thread e.g.,
a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

= memory shared through the virtual memory mechanisms, which
already support multiple processes

= HW for fast thread switch; much faster than full process switch ~
100s to 1000s of clocks

= When to switch?
= Alternate instruction per thread (fine grain)

= When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Fine-Grained Multithreading

= Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

= Usually done in a round-robin fashion, skipping
any stalled threads

= CPU must be able to switch threads every clock

= Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

» Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

s Used on Sun's T1




Coarse-Grained Multithreading

» Switches threads only on costly stalls, such as L2 cache
misses
= Advantages
= Need to have very fast thread-switching
= Doesn’t slow down thread, since instructions from
other threads issued only when the thread encounters
a costly stall
» Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
= Since CPU issues instructions from 1 thread, when a
stall occurs, the pipeline must be emptied or frozen
= New thread must fill pipeline before instructions can
complete
= Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Simultanuous Multithreading SMT

= Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

= Multiple instructions from different threads.
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Sun T1

s Focused on TLP rather than ILP
= Fine-grained multithreading
» 8 cores, 4 threads per core, one shared FP unit.

» 6-stage pipeline (similar to MIPS with one stage
for thread switching)

» L1 caches: 16KB |, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

m L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Sun T1

= Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)
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Sun T1
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= Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen — The core stalls only if all the 4
threads are not ready

1 Not ready
® Ready

™ Executing

Sun t1l
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= Breakdown of the causes for a thread being not

m Other
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The ARM Cortex-A8

= Dual issue processor 13-stage pipeline
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The ARM Cortex-A8

= Five stage instruction decode

DO D1 D2 D3 D4
Instruction decode
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ARM Cortex-A8

» Execution Pipeline

EO E1 E2 E3 E4 E5
Instruction execute
Integer register write back
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= Branch-Target buffers
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Branch-Target Buffer

= Need high instruction bandwidth!

= Next PC prediction buffer, indexed by current PC

S PC 1 memory and
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Branch Folding

= Optimization:
= Larger branch-target buffer

= Add target instruction into buffer to deal with longer
decoding time required by larger buffer

= “Branch folding”
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Return Address Predictor

s Most unconditional branches come from
function returns

= The same procedure can be called from

multiple sites

= Causes the buffer to potentially forget about the
return address from previous calls

= Create return address buffer organized as a
stack
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Inteqrated Instruction Fetch Unit

= Design monolithic unit that performs:
= Branch prediction
= Instruction prefetch
= Fetch ahead
= Instruction memory access and buffering
« Deal with crossing cache lines
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Register Renaming

= Register renaming vs. reorder buffers
= Instead of virtual registers from reservation stations and
reorder buffer, create a single register pool
= Contains visible registers and virtual registers
= Use hardware-based map to rename registers during issue
= WAW and WAR hazards are avoided
= Speculation recovery occurs by copying during commit
= Still need a ROB-like queue to update table in order

= Simplifies commit:
=« Record that mapping between architectural register and physical register
is no longer speculative
= Free up physical register used to hold older value
= In other words: SWAP physical registers on commit

= Physical register de-allocation is more difficult
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Integrated Issue and Renaming

s Combining instruction issue with register
renaming:
= ISssue logic pre-reserves enough physical registers
for the bundle (fixed number?)
= Issue logic finds dependencies within bundle, maps
registers as necessary

= Issue logic finds dependencies between current
bundle and already in-flight bundles, maps registers

as necessary
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How Much?

= How much to speculate
= Mis-speculation degrades performance and power
relative to no speculation
= May cause additional misses (cache, TLB)
= Prevent speculative code from causing higher
costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery

= No processor can resolve multiple branches per
cycle
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Energy Efficiency

= Speculation and energy efficiency

= Note: speculation is only energy efficient when it
significantly improves performance

= Value prediction

= Uses:
= Loads that load from a constant pool
= Instruction that produces a value from a small set of values
= Not been incorporated into modern processors
= Similar idea--address aliasing prediction--is used on
sSome processors
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