VLIW Processors

» Package multiple operations into one instruction

s Example VLIW processor:
= One integer instruction (or branch)
= Two independent floating-point operations
= Two independent memory references

Buinpayds aneis pue anss| ajdniniA

= Must be enough parallelism in the code to fill the
available slots

VLIW Processors

» Disadvantages:
» Statically finding parallelism
= Code size
= No hazard detection hardware
= Binary code compatibility

Buinpayos aness pue anss| ajdnni

VLIW Example

= Source instruction Instruction using result

= FP ALU OP FP ALU OP
= FP ALU OP Store double
= Load double FP ALU OP
= Load Double Store double
Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

3

2
1
0

For (1=1000;1>0;1++)

X[]=x[I]+s;

Latency

VLIW Example

= Assume that w can schedule 2 memory

operations, 2 FP operations, and one integer or

branch

Memory Memory FP
reference 1 reference 2 operation 1

LD FQ.0(R1) LD F6,-8(R1)
LD F10,-16(R1) . L
LD F18,-32(R1) LD F22,-40(R1) . ADDD P4,FO,F2

LD F26,-48(R1) ADDD F12,F10,F2
ADDD F20,F18,F2
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2

SD -16(R1),F12 SD -24(R1),F16
SD 24(R1),F20 SD 16(R1),F24
SD 8(R1),F28

FP Int. op/ Clock

op. 2 branch

ADDD F8,F6,F2
ADDD F16,F14,F2
ADDD F24,F22,F2

DADD R1,R1,#-56

BNEZ R1,LOOP

Dynamic Scheduling, Multiple Issue, and Speculation

= Modern microarchitectures:
= Dynamic scheduling + multiple issue + speculation

= Two approaches:

= Assign reservation stations and update pipeline
control table in half clock cycles
= Only supports 2 instructions/clock
= Design logic to handle any possible dependencies
between the instructions

= Hybrid approaches

uonie|noads pue ‘anss| ajdinny ‘Bulnpayas Jlweuiq

= Issue logic can become bottleneck

Multiple Issue

Limit the number of instructions of a given class
that can be issued in a “bundle”

= |l.e. one FP, one integer, one load, one store

Examine all the dependencies among the
instructions in the bundle

If dependencies exist in bundle, encode them in
reservation stations

uoire|noads pue ‘enss| ajdnny ‘Bulinpayas olwreuiq

Also need multiple completion/commit

Example

Loop:

LD R2,0(R1)
DADDIU R2,R2,#1
SD R2,0(R1)
DADDIU R1,R1,#8
BNE R2,R3,LOOP

;R2=array element
;increment R2

;store result

;increment pointer
;branch if not last element

uonie|noads pue ‘anss| ajdinny ‘Bulnpayas Jlweuiq

100

990

80

Y
=)

Percent of Total Issue Cycles
2

Applications

;';? [[D icache miss
N & ato miss
y | itb miss

- . processor busy

. memory conflict
long fp

short fp

long integer

EZ] branch misprediction
B ceache miss

From: Tullsen, Eggers, and
Levy,

“Simultaneous Multithreading:
Maximizing On-chip
Parallelism, ISCA 1995.

Thread Level parallelism

= Multithreading: multiple threads to share the functional
units of 1 processor via overlapping

= processor must duplicate independent state of each thread e.g.,
a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

= memory shared through the virtual memory mechanisms, which
already support multiple processes

= HW for fast thread switch; much faster than full process switch ~
100s to 1000s of clocks

= When to switch?
= Alternate instruction per thread (fine grain)

= When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Fine-Grained Multithreading

= Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

= Usually done in a round-robin fashion, skipping
any stalled threads

= CPU must be able to switch threads every clock

= Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

» Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

s Used on Sun's T1

Coarse-Grained Multithreading

» Switches threads only on costly stalls, such as L2 cache
misses
= Advantages
= Need to have very fast thread-switching
= Doesn’t slow down thread, since instructions from
other threads issued only when the thread encounters
a costly stall
» Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
= Since CPU issues instructions from 1 thread, when a
stall occurs, the pipeline must be emptied or frozen
= New thread must fill pipeline before instructions can
complete
= Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Simultanuous Multithreading SMT

= Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

= Multiple instructions from different threads.

T

SM

Two threads, 8 Units

One thread, 8 Units

N

Multithreading

Simultaneous

S HEBUEODBEUO0O0O
WDDEDDDDEEHE
D

OOOBEOOAO AR
OAO0ZO0OOO00#

Multithreading

Z)7|HEE|~{E~|]
N\ 7RI AN 7B,

essing

3
DODEDE00DEnE0

d Mult

I I |
g I 77
¢ DO O0OWEEOOOE L
s IO0OOWEEOOOEE
(&)

|
i 7 o+ o
¢ OKXIE DO OEOL
T OWOEBROWOEEDOM

s JODOUOooogan
sULOO0OOU0ononn
s 000000o0o00d
FO0O00O0O00UIOOO0O0O

aine

B Thread 5
] Idle slot

[] Thread 3
(] Thread 4

[] Thread 1

(8942 Jossaooud) swip

Thread 2

Sun T1

s Focused on TLP rather than ILP
= Fine-grained multithreading
» 8 cores, 4 threads per core, one shared FP unit.

» 6-stage pipeline (similar to MIPS with one stage
for thread switching)

» L1 caches: 16KB |, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

m L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Sun T1

= Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)

1.8
1.6
1.4

24—
il N I L B = .
(EEEE B B -,
06+ — —
04— —— L B
02+—~ — — — — —
0

LlImiss Ll1Dmiss L2miss Lllmiss L1Dmiss L2 miss
ral rate rate latency latency latency

Sun T1

120%

100% -

80% -

60% -

40% -

20% -

0% -

TPC-C

SPECJBBOO

SPECWeb99

= Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen — The core stalls only if all the 4
threads are not ready

1 Not ready
® Ready

™ Executing

Sun t1l

ready

120%

100% -

80% -

60% -

40% -

20% -

0% -

TPC-C

SPECJBBOO

SPECWeb99

= Breakdown of the causes for a thread being not

m Other

M Pipeline delay
L2 miss

L1 D miss

HL11miss

The ARM Cortex-A8

= Dual issue processor 13-stage pipeline

FO F1 F2 Do D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict
penalty =13 cycles Instruction execute and load/store
]
Instruction 3 ’ALU/MUL i 0
g ipe
fetch % > i Spdec
N ion decod : i
etcl =
Saal | | nstruction decode % b ALU pipe 1 up%zte
g [——— S
%‘.

¥

2 BP
LS pipeOor 1 update

The ARM Cortex-A8

= Five stage instruction decode

DO D1 D2 D3 D4
Instruction decode
Early | Dec/seq H—» — -
Dec
r Dec queue Score+board RegFile
read/write ; . 1D remap
issue logic
Early
Dec — Dec » — —»

ARM Cortex-A8

» Execution Pipeline

EO E1 E2 E3 E4 E5
Instruction execute
Integer register write back
]
v ALU BP
H{| Shit # + @ Sat ¥ WwB
flags update ALU
» multiply
S MUL MUL MUL ACC WB pipe 0
INST O g "l 1 [2 [2 P i
_’. %
3
= ALU BP
INST 1 Q i
& | Shft B <+ | Sat update WB ALU pipe 1
@ flags
;—_;:
| ALU b LS pipeline B ws [
pipe 0 or 1

= Branch-Target buffers

oniies |
in branch- |

buffar

No: instruction is
- tobe Brarch
beanch: procesd normaly preclicted
takan or

Yas: then istruction s beanch and predkcled
PC shoud ba used a5 the next PC

Branch-Target Buffer

= Need high instruction bandwidth!

= Next PC prediction buffer, indexed by current PC

S PC 1 memory and

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

Branch Folding

= Optimization:
= Larger branch-target buffer

= Add target instruction into buffer to deal with longer
decoding time required by larger buffer

= “Branch folding”

uonenoads pue A1aAlleg uononisuj 1oy sanbiuydal ApY

Return Address Predictor

s Most unconditional branches come from
function returns

= The same procedure can be called from

multiple sites

= Causes the buffer to potentially forget about the
return address from previous calls

= Create return address buffer organized as a
stack

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

Inteqrated Instruction Fetch Unit

= Design monolithic unit that performs:
= Branch prediction
= Instruction prefetch
= Fetch ahead
= Instruction memory access and buffering
« Deal with crossing cache lines

uonenoads pue A1aAlleg uononisuj 1oy sanbiuydal ApY

Register Renaming

= Register renaming vs. reorder buffers
= Instead of virtual registers from reservation stations and
reorder buffer, create a single register pool
= Contains visible registers and virtual registers
= Use hardware-based map to rename registers during issue
= WAW and WAR hazards are avoided
= Speculation recovery occurs by copying during commit
= Still need a ROB-like queue to update table in order

= Simplifies commit:
=« Record that mapping between architectural register and physical register
is no longer speculative
= Free up physical register used to hold older value
= In other words: SWAP physical registers on commit

= Physical register de-allocation is more difficult

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

Integrated Issue and Renaming

s Combining instruction issue with register
renaming:
= ISssue logic pre-reserves enough physical registers
for the bundle (fixed number?)
= Issue logic finds dependencies within bundle, maps
registers as necessary

= Issue logic finds dependencies between current
bundle and already in-flight bundles, maps registers

as necessary

uonenoads pue A1aAlleg uononisuj 1oy sanbiuydal ApY

How Much?

= How much to speculate
= Mis-speculation degrades performance and power
relative to no speculation
= May cause additional misses (cache, TLB)
= Prevent speculative code from causing higher
costing misses (e.g. L2)

= Speculating through multiple branches
= Complicates speculation recovery

= No processor can resolve multiple branches per
cycle

uoinenoads pue A1aAllag uononasu| 1oy sanbiuyosl "ApY

Energy Efficiency

= Speculation and energy efficiency

= Note: speculation is only energy efficient when it
significantly improves performance

= Value prediction

= Uses:
= Loads that load from a constant pool
= Instruction that produces a value from a small set of values
= Not been incorporated into modern processors
= Similar idea--address aliasing prediction--is used on
sSome processors

uonenoads pue A1aAllag uononasu| 1oy sanbiuydal “ApY

