
10Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Package multiple operations into one instruction

 Example VLIW processor:
 One integer instruction (or branch)
 Two independent floating-point operations
 Two independent memory references

 Must be enough parallelism in the code to fill the
available slots

M
ultiple Issue and S

tatic S
cheduling

11Copyright © 2012, Elsevier Inc. All rights reserved.

VLIW Processors

 Disadvantages:
 Statically finding parallelism
 Code size
 No hazard detection hardware
 Binary code compatibility

M
ultiple Issue and S

tatic S
cheduling

12

VLIW Example

 Source instruction Instruction using result Latency

 FP ALU OP FP ALU OP 3

 FP ALU OP Store double 2

 Load double FP ALU OP 1

 Load Double Store double 0

Copyright © 2012, Elsevier Inc. All rights reserved.

For (I=1000;I>0;I++)

x[I]=x[I]+s;

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D 0(R1),F4
DADDUI R1,R1,#-8
BNE R 1,R2,Loop

13

VLIW Example

 Assume that w can schedule 2 memory
operations, 2 FP operations, and one integer or
branch

Copyright © 2012, Elsevier Inc. All rights reserved.

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6

SD -16(R1),F12 SD -24(R1),F16 DADD R1,R1,#-56 7

SD 24(R1),F20 SD 16(R1),F24 8

SD 8(R1),F28 BNEZ R1,LOOP 9

14Copyright © 2012, Elsevier Inc. All rights reserved.

Dynamic Scheduling, Multiple Issue, and Speculation

 Modern microarchitectures:
 Dynamic scheduling + multiple issue + speculation

 Two approaches:
 Assign reservation stations and update pipeline

control table in half clock cycles
 Only supports 2 instructions/clock

 Design logic to handle any possible dependencies
between the instructions

 Hybrid approaches

 Issue logic can become bottleneck

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

15Copyright © 2012, Elsevier Inc. All rights reserved.

 Limit the number of instructions of a given class
that can be issued in a “bundle”
 I.e. one FP, one integer, one load, one store

 Examine all the dependencies among the
instructions in the bundle

 If dependencies exist in bundle, encode them in
reservation stations

 Also need multiple completion/commit

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Multiple Issue

16Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: LD R2,0(R1) ;R2=array element

DADDIU R2,R2,#1 ;increment R2

SD R2,0(R1) ;store result

DADDIU R1,R1,#8 ;increment pointer

BNE R2,R3,LOOP ;branch if not last element

D
ynam

ic S
cheduling, M

ultiple Issue, and S
peculation

Example

20Copyright © 2012, Elsevier Inc. All rights reserved.

From: Tullsen, Eggers, and
Levy,

“Simultaneous Multithreading:
Maximizing On-chip
Parallelism, ISCA 1995.

21

Thread Level parallelism

 Multithreading: multiple threads to share the functional
units of 1 processor via overlapping
 processor must duplicate independent state of each thread e.g.,

a separate copy of register file, a separate PC, and for running
independent programs, a separate page table

 memory shared through the virtual memory mechanisms, which
already support multiple processes

 HW for fast thread switch; much faster than full process switch 
100s to 1000s of clocks

 When to switch?
 Alternate instruction per thread (fine grain)

 When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Copyright © 2012, Elsevier Inc. All rights reserved.

22

Fine-Grained Multithreading
 Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

 Usually done in a round-robin fashion, skipping
any stalled threads

 CPU must be able to switch threads every clock
 Advantage is it can hide both short and long

stalls, since instructions from other threads
executed when one thread stalls

 Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

 Used on Sun’s T1

Copyright © 2012, Elsevier Inc. All rights reserved.

23

Coarse-Grained Multithreading

 Switches threads only on costly stalls, such as L2 cache
misses

 Advantages
 Need to have very fast thread-switching
 Doesn’t slow down thread, since instructions from

other threads issued only when the thread encounters
a costly stall

 Disadvantage is hard to overcome throughput losses
from shorter stalls, due to pipeline start-up costs
 Since CPU issues instructions from 1 thread, when a

stall occurs, the pipeline must be emptied or frozen
 New thread must fill pipeline before instructions can

complete
 Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

Copyright © 2012, Elsevier Inc. All rights reserved.

24

Simultanuous Multithreading SMT

 Fine-grained multithreading implemented on top
of multiple-issued dynamically scheduled
processor.

 Multiple instructions from different threads.

Copyright © 2012, Elsevier Inc. All rights reserved.

25

SMT

Copyright © 2012, Elsevier Inc. All rights reserved.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

One thread, 8 Units Two threads, 8 Units

26

Multithreading

Copyright © 2012, Elsevier Inc. All rights reserved.

Ti
m

e
(p

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

27

Sun T1

 Focused on TLP rather than ILP

 Fine-grained multithreading

 8 cores, 4 threads per core, one shared FP unit.

 6-stage pipeline (similar to MIPS with one stage
for thread switching)

 L1 caches: 16KB I, 8KB D, 64-byte block size
(misses to L2 23 cycles with no contention)

 L2 caches: 4 separate L2 caches each 750KB.
Misses to main memory 110 cycles assuming no
contention

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Sun T1

 Relative change in the miss rate and latency
when executing one thread per core vs 4 threads
per core (TPC-C)

Copyright © 2012, Elsevier Inc. All rights reserved.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

L1 I miss
rate

L1 D miss
rate

L2 miss
rate

L1 I miss
latency

L1 D miss
latency

L2 miss
latency

29

Sun T1

 Breakdown of the status on an average thread.
Ready means the thread is ready, but another
one is chosen – The core stalls only if all the 4
threads are not ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Not ready

Ready

Executing

30

Sun t1

 Breakdown of the causes for a thread being not
ready

Copyright © 2012, Elsevier Inc. All rights reserved.

0%

20%

40%

60%

80%

100%

120%

TPC‐C SPECJBB00 SPECWeb99

Other

Pipeline delay

L2 miss

L1 D miss

L1 I miss

31

The ARM Cortex-A8

 Dual issue processor 13-stage pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

32

The ARM Cortex-A8

 Five stage instruction decode

Copyright © 2012, Elsevier Inc. All rights reserved.

33

ARM Cortex-A8

 Execution Pipeline

Copyright © 2012, Elsevier Inc. All rights reserved.

34Copyright © 2012, Elsevier Inc. All rights reserved.

 Need high instruction bandwidth!
 Branch-Target buffers

 Next PC prediction buffer, indexed by current PC

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch-Target Buffer

35Copyright © 2012, Elsevier Inc. All rights reserved.

 Optimization:
 Larger branch-target buffer

 Add target instruction into buffer to deal with longer
decoding time required by larger buffer

 “Branch folding”

A
dv. Techniques for Instruction D

elivery and S
peculation

Branch Folding

36Copyright © 2012, Elsevier Inc. All rights reserved.

 Most unconditional branches come from
function returns

 The same procedure can be called from
multiple sites
 Causes the buffer to potentially forget about the

return address from previous calls

 Create return address buffer organized as a
stack

A
dv. Techniques for Instruction D

elivery and S
peculation

Return Address Predictor

37Copyright © 2012, Elsevier Inc. All rights reserved.

 Design monolithic unit that performs:
 Branch prediction

 Instruction prefetch
 Fetch ahead

 Instruction memory access and buffering
 Deal with crossing cache lines

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Instruction Fetch Unit

38Copyright © 2012, Elsevier Inc. All rights reserved.

 Register renaming vs. reorder buffers
 Instead of virtual registers from reservation stations and

reorder buffer, create a single register pool
 Contains visible registers and virtual registers

 Use hardware-based map to rename registers during issue

 WAW and WAR hazards are avoided

 Speculation recovery occurs by copying during commit

 Still need a ROB-like queue to update table in order

 Simplifies commit:
 Record that mapping between architectural register and physical register

is no longer speculative

 Free up physical register used to hold older value

 In other words: SWAP physical registers on commit

 Physical register de-allocation is more difficult

A
dv. Techniques for Instruction D

elivery and S
peculation

Register Renaming

39Copyright © 2012, Elsevier Inc. All rights reserved.

 Combining instruction issue with register
renaming:
 Issue logic pre-reserves enough physical registers

for the bundle (fixed number?)

 Issue logic finds dependencies within bundle, maps
registers as necessary

 Issue logic finds dependencies between current
bundle and already in-flight bundles, maps registers
as necessary

A
dv. Techniques for Instruction D

elivery and S
peculation

Integrated Issue and Renaming

40Copyright © 2012, Elsevier Inc. All rights reserved.

 How much to speculate
 Mis-speculation degrades performance and power

relative to no speculation
 May cause additional misses (cache, TLB)

 Prevent speculative code from causing higher
costing misses (e.g. L2)

 Speculating through multiple branches
 Complicates speculation recovery

 No processor can resolve multiple branches per
cycle

A
dv. Techniques for Instruction D

elivery and S
peculation

How Much?

41Copyright © 2012, Elsevier Inc. All rights reserved.

 Speculation and energy efficiency
 Note: speculation is only energy efficient when it

significantly improves performance

 Value prediction
 Uses:

 Loads that load from a constant pool

 Instruction that produces a value from a small set of values

 Not been incorporated into modern processors

 Similar idea--address aliasing prediction--is used on
some processors

A
dv. Techniques for Instruction D

elivery and S
peculation

Energy Efficiency

