
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to minimize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6

Data Dependence

 Loop: L.D F0,0(R1)

 ADD.D F4,F0,F2

 S.D F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

Copyright © 2012, Elsevier Inc. All rights reserved.

7Copyright © 2012, Elsevier Inc. All rights reserved.

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use renaming techniques

Introduction

8Copyright © 2012, Elsevier Inc. All rights reserved.

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controller
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

9

Control Dependence

 Must preserve exception
behavior.

 We should not change
the exception behavior of
the program.

 We often relax this to
“reordering of instruction
must not raise new
exceptions”

 DADDU R2,R3,R4

 BEQZ R2,L1

 LW R1,0(R2)

 L1: ……

 No data dependence
prevents us from
exchanging BEQZ
and LW, but might
result in memory
protection exception

Copyright © 2012, Elsevier Inc. All rights reserved.

10Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
 OR instruction dependent

on DADDU and DSUBU
 Preserving the order alone

is not sufficient (must have
the correct value in R1)

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

Introduction• Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L: …
OR R7,R1,R8

• Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

11Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the source

instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

C
om

piler Techniq
ues

No dependence
between iterations

MIPS code?

12Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Stalls

Loop: L.D F0,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall (assume integer load latency is 1) 8
BNE R1,R2,Loop 9

C
om

piler Techniq
ues

13Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Scheduling

Scheduled code:
Loop: L.D F0,0(R1) 1

DADDUI R1,R1,#-8 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,8(R1) 6
BNE R1,R2,Loop 7

C
om

piler Techniq
ues

14Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling

 Loop unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)
 Eliminate unnecessary instructions

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1) ;drop DADDUI & BNE

L.D F6,-8(R1)

ADD.D F8,F6,F2

S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

ADD.D F12,F10,F2

S.D F12,-16(R1) ;drop DADDUI & BNE

L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,Loop

C
om

piler Techniq
ues

 note: number
of live registers
vs. original loop

1 stall

2 stalls

15Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

Loop: L.D F0,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)

L.D F14,-24(R1)

ADD.D F4,F0,F2

ADD.D F8,F6,F2

ADD.D F12,F10,F2

ADD.D F16,F14,F2

S.D F4,0(R1)

S.D F8,-8(R1)

DADDUI R1,R1,#-32

S.D F12,16(R1)

S.D F16,8(R1)

BNE R1,R2,Loop

C
om

piler Techniq
ues

Loop iterations are
independent

16Copyright © 2012, Elsevier Inc. All rights reserved.

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n
 Goal: make k copies of the loop body
 Generate pair of loops:

 First executes n mod k times
 Second executes n / k times
 “Strip mining”

C
om

piler Techniq
ues

17

Loop Level Parallelsim

 Loop-Level Parallelism (LLP) analysis focuses
on whether data accesses in later iterations of a
loop are data dependent on data values
produced in earlier iterations and possibly
making loop iterations independent.

 the computation in each iteration is independent of the
previous iterations and the loop is thus parallel. The use
of X[i] twice is within a single iteration.

 Thus loop iterations are parallel (or independent from each
other).

Copyright © 2012, Elsevier Inc. All rights reserved.

For(i=0;i<100;i++)

x[i]=x[i]+A;

18

Loop Level Parallelsim

 Loop-carried Dependence: A data dependence between
different loop iterations (data produced in earlier iteration used
in a later one).

 LLP analysis is important in software optimizations such as
loop unrolling since it usually requires loop iterations to be
independent.

 LLP analysis is normally done at the source code level or
close to it since assembly language and target machine code
generation introduces loop-carried name dependence in the
registers used for addressing and incrementing.

 Instruction level parallelism (ILP) analysis, on the other hand,
is usually done when instructions are generated by the
compiler

Copyright © 2012, Elsevier Inc. All rights reserved.

19

Loop Level Parallism

 S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).

 does not prevent loop iteration parallelism.

 S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

 These two dependencies are loop-carried spanning more than one
iteration preventing loop parallelism.

Copyright © 2012, Elsevier Inc. All rights reserved.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

A i+1

B i+1

A i+1 A i+1

Not Loop

Carried

Dependence

Loop-carried Dependence

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1];} /* S2 */

}

20

Loop Level parallelism

 for(i=0;i<=100;i++)

 A[i] = A[i] + B[i]; /* S1 */

 B[i+1] = C[i] + D[i]; /* S2 */

 S1 uses the value calculated by S2 in the
previous iteration (loop carried dependence)

 The dependence is not circular, S2 does not
depend on S1 in the previous iteration

Copyright © 2012, Elsevier Inc. All rights reserved.

21Copyright © 2012, Elsevier Inc. All rights reserved.

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

Loop Start-up code

Loop Completion code

Iteration 1

Not Loop
Carried
Dependence

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

22

Finding Dependence

 Finding dependences in the program is very
important for renaming and executing
instructions in parallel.

 Arrays and pointers makes finding dependences
very difficult.

 Assume array indices are affine, which means
on the form ai+b where a and b are constant.

 GCD test can be used to detect dependences.

Copyright © 2012, Elsevier Inc. All rights reserved.

23

Finding Dependence

 Assume we stored an array with index value of
ai+b and loaded an array with an index value of
cj+d

 Are they pointing to the same location?

 Assume the loop limit is m,n

 Are there

Copyright © 2012, Elsevier Inc. All rights reserved.

dkcbjankjmkj such that ,,

24

GCD test

 A simple and sufficient test for absence can be
found.

 If a loop dependence exists, then

Copyright © 2012, Elsevier Inc. All rights reserved.

)(divides),(bdacGCD

25

GCD Test -- Example

Copyright © 2012, Elsevier Inc. All rights reserved.

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}

a = 2 b = 3 c = 2 d = 0

GCD(a, c) = 2

d - b = -3

2 does not divide -3 No dependence
is not possible.

5,7,9,11,13,15,17,19,21,23,….

4,6,8,10,12,14,16,18,20,22,…..

26

Dependence Analysis

 Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

 Objects are referenced using pointers

 Array indexing using another array a[b[i]]

 Dependence may exist for some values of input,
but in reality the input never takes these values.

 When we want to know more than the possibility
of dependence (which write causes it?)

 Dependence analysis across procedure
boundaries

Copyright © 2012, Elsevier Inc. All rights reserved.

27

Dependence Analysis

 Sometimes, points-to analysis might help.

 We might be able to answer simpler questions,
or get some hints.

 Do 2 pointers point to the same list?

 Type information

 Information derived when the object was
allocated

 Pointer assignments

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Software Pipelines
 Software pipelined loop chooses instructions

from different loop iterations, thus separating the
dependent instructions within one iteration of the
original loop

Copyright © 2012, Elsevier Inc. All rights reserved.

29

Software Piplines

Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,#-8

BNE

Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI R1,R1,#-24
11 BNE R1,R2,LOOP

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

1 S.D F4,0(R1) ;Stores M[i]
2 ADD.D F4,F0,F2 ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI R1,R1,#-8
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

30

Software Pipelines

Copyright © 2012, Elsevier Inc. All rights reserved.

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

4 Software Pipelined loop iterations (2 iterations fewer)

1 2 3 4 5 6

1 2 3 4
finish

code

start-up

code

Loop Body of software Pipelined Version

