Computer Architecture

A Quantitative Approach, Fifth Edition

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Introduction

uonanpou|

= Pipelining become universal technique in 1985
= Overlaps execution of instructions
= Exploits “Instruction Level Parallelism”

= Beyond this, there are two main approaches:
» Hardware-based dynamic approaches
= Used in server and desktop processors
= Not used as extensively in PMP processors
= Compiler-based static approaches
= Not as successful outside of scientific applications

Instruction-Level Parallelism

uononponu|

= When exploiting instruction-level parallelism,
goal is to minimize CPI
= Pipeline CPI =
= |deal pipeline CPI +
= Structural stalls +
» Data hazard stalls +
= Control stalls

= Parallelism with basic block is limited
= Typical size of basic block = 3-6 instructions
= Must optimize across branches

Data Dependence

uononpou|

= Loop-Level Parallelism
= Unroll loop statically or dynamically
= Use SIMD (vector processors and GPUs)

= Challenges:
= Data dependency
= Instruction j is data dependent on instruction i if
= Instruction i produces a result that may be used by instruction j

= Instruction j is data dependent on instruction k and instruction k
is data dependent on instruction i

= Dependent instructions cannot be executed
simultaneously

Data Dependence

uonanpou|

= Dependencies are a property of programs

= Pipeline organization determines if dependence
is detected and if it causes a stall

= Data dependence conveys:
= Possibility of a hazard
= Order in which results must be calculated

= Upper bound on exploitable instruction level
parallelism

= Dependencies that flow through memory
locations are difficult to detect

Data Dependence

« Loop: LD F0,0(R1)
. ADD.D F4,FO,F2
. S.D F4,0(R1)
. DADDUI R1,R1#-8

. BNE R1,R2,Loop

Name Dependence

uononpou|

= Two instructions use the same name but no flow
of information
= Not a true data dependence, but is a problem when
reordering instructions
= Antidependence: instruction j writes a register or
memory location that instruction i reads
= Initial ordering (i before j) must be preserved
= Output dependence: instruction i and instruction j
write the same register or memory location
= Ordering must be preserved

= To resolve, use renaming techniques

Other Factors

uonanpou|

= Data Hazards
= Read after write (RAW)
= Write after write (WAW)
= Write after read (WAR)

= Control Dependence
= Ordering of instruction i with respect to a branch
instruction

= Instruction control dependent on a branch cannot be moved
before the branch so that its execution is no longer controller
by the branch

= An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Control Dependence

= Must preserve exception] DADDU R2,R3,R4
behavior. . BEQZ R2L1
= We should not change "L Lw R1,0(R2)
[] Lo

the exception behavior of
the program.

= We often relax this to No data dependence

“reortderitng _of instruction prevents us from

Must not raise new exchanging BEQZ

exceptions’)
and LW, but might

result in memory
protection exception

Examples

Example 1:

DADDU R1,R2,R3

BEQZ R4,L

DSUBU R1,R1,R6
L: ...

OR R7,R1,R8

Example 2:

DADDU R1,R2,R3

BEQZ R12,skip

DSUBU R4,R5,R6

DADDU R5,R4,R9
skip:

OR R7,R8,R9

= OR instruction dependent
on DADDU and DSUBU

= Preserving the order alone
is not sufficient (must have
the correct value in R1)

= Assume R4 isn't used after
skip
= Possible to move DSUBU
before the branch

uononpou|

= Pipeline scheduli

instruction
= Example:

X[i] = x[i] +s;

for (i=999; i>=0; i=i-1)

Compiler Techniques for Exposing ILP

ng

= Separate dependent instruction from the source
instruction by the pipeline latency of the source

No dependence
between iterations
MIPS code?

Instruction producing result

Instruction using result Latency in clock cycles

FPALU op Another FPALU op k)
FP ALU op Store double 2
Load double FPALU op 1
Lo double Store double il

sanbiuyoa) Jajdwod

Pipeline Stall
Loop: L.D F0,0(R1)
stall
ADD.D F4,F0,F2
stall
stall
s.D F4,0(R1)

DADDUI R1,R1,#-8
stall (assume integer
BNE R1,R2,Loop

S

load latency is 1)

© o ~NOUAWN R

Instruction producing result

Instruction using result Latency in clock cycles

FPALU op Another FPALU op k)
FP ALU op Store double 2
Load double FPALU op 1
Lo double Store double il

sanbjuydsay Ja|idwod

Pipeline Scheduling

Scheduled code:

Loop: L.D F0,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,F0,F2

stall
stall

S.D F4,8(R1)
BNE R1,R2,Loop

No U WwN e

Instruction producing result

Instruction using result Latency in clock cycles

FPALU op Another FPALU op k)
FPALU op Store double 2
Load double FPALU op 1
Lo double Store double il

sanbiuyoa) Jadwod

Loop Unrolling
= =
= Loop unrolling
= Unroll by a factor of 4 (assume # elements is divisible by 4)
= Eliminate unnecessary instructions
Loop: L.D F0,0(R1)
ADD.D F4,FO,F2_
sD F4,0(R1) drop DADDUI-& BNE
L.D F6,-8(R1) -
1 stall ADDD F8F6F2
\S.D F8,-8(R1) ;drop DADDUI & BN
\\ L.D F10,-16(R1) —
\ ADD.D F12F10,F2 .~ .
s.D F12,-16(R1) ;drop DADDUI & BNE
LD F14,24R1) -~
’;DDD-D Eigvz“(glz) = note: number
ADDUI R1,R1#32 of IIVQ r.eQ'Sters
BNE RLR2Loop vs. original loop

sanbiuyoa) Jajdwod

Loop Unrolling/Pipeline Scheduling
= Pipeline schedule the unrolled loop:
Loop: LD FO,0(R1)
LD F6,-8(R1)
b F10-16(R1) Loop iterations are
LD F14,-24(R1) ;
independent
ADD.D F4,FO,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
s.D F4,0(R1)
sSD F8,-8(R1)
DADDUI R1,R1,#-32
SD F12,16(R1)
sS.D F16,8(R1)
BNE R1,R2,Loop

sanbjuydsay Ja|idwod

Strip Mining

= Unknown number of loop iterations?
= Number of iterations = n
= Goal: make k copies of the loop body
= Generate pair of loops:
= First executes n mod k times
= Second executes n / k times
= “Strip mining”

sanbiuyoa) Jadwod

Loop Level Parallelsim

= Loop-Level Parallelism (LLP) analysis focuses
on whether data accesses in later iterations of a
loop are data dependent on data values
produced in earlier iterations and possibly
making loop iterations independent.
For(i=0;i<100;i++)
X[I]=x[i]+A;

= the computation in each iteration is independent of the
previous iterations and the loop is thus parallel. The use
of twice is within a single iteration.
~ Thus loop iterations are parallel (or independent from each
other).

Loop Level Parallelsim

= Loop-carried Dependence: A data dependence between
different loop iterations (data produced in earlier iteration used
in a later one).

= LLP analysis is important in software optimizations such as
loop unrolling since it usually requires loop iterations to be
independent.

= LLP analysis is normally done at the source code level or
close to it since assembly language and target machine code
generation introduces loop-carried name dependence in the
registers used for addressing and incrementing.

= Instruction level parallelism (ILP) analysis, on the other hand,
is usually done when instructions are generated by the
compiler

|= 00 D I&V 6‘| P ar al | | sm Lcoprcrried Dependence

Iteration # —> |

for (i=1; i<=100; i=i+1) {

Not Loop

Ali+1] = A[i] + C[il; /* S1*/ Carried —
B[i+1] = B[i] + A[i+1];} /*S2*/ Oependeree 43

Dependency Graph

= S2uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).
. does not prevent loop iteration parallelism.
= S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence
prevents parallelism). The same applies for S2 for B[i] and B[i+1]
- These two dependencies are loop-carried spanning more than one
iteration preventing loop parallelism.

Loop Level parallelism

a for(i=0;i<=100;i++)
= Alil = Afi] + BIil; % S1 %
= B[i+1]=C[i]+D[i]; /*S2 *

= S1 uses the value calculated by S2 in the
previous iteration (loop carried dependence)

= The dependence is not circular, S2 does not
depend on S1 in the previous iteration

for (I=1; 1<=100; i=i+1) {
All=AL]+B[]; /= S1%
B[i+1] = C[i] + Dil; /* 52 */

}

[1]=A[1] + B[1] A[2] =A[2] +B[2] Al99] =A[99] + BI99]; | A[100] = A[100] + B[100];

B[100] = C[99] + D[99]; | g[101] = C[100] + D[100];

[2]=C[1]+D[1]; | B[3]=C[2] +D[2]

Al1] = A[1] + BL

for (i=1; i<=99; i=i+1) {
B[i+1] = C[i] + D[il;
Afi+1] = A[i+1] + B[i+1];

¥
B[101] = C[100] + D[100];

Loop Start-up code Iteration 1

All]

A[100] = A[100] + B[100];

m+8k | Ap=AR+BR: | A[W]:A[%]*B[W]f

Not Loop

BII=C2+ D2l qorrid | B[L00] = C[99] + D[99];

B[101] = C[100] + D[100];

Dependence Loop Completion code

Finding Dependence

Finding dependences in the program is very
important for renaming and executing
instructions in parallel.

Arrays and pointers makes finding dependences
very difficult.

Assume array indices are affine, which means
on the form ai+b where a and b are constant.

GCD test can be used to detect dependences.

Finding Dependence

j,k m<jk<nsuchthat ax j+b=cxk+d

Assume we stored an array with index value of
ai+b and loaded an array with an index value of
¢g+d

Are they pointing to the same location?
Assume the loop limit is m,n

Are there

GCD test

A simple and sufficient test for absence can be
found.

If a loop dependence exists, then

GCD(c,a) divides (d —b)

GCD Test -- Example

for(i=1; i<=100; i=i+1) {
X[2*1+3] = x[2*]] * 5.0;
}
a=2 b=3 c¢=2 d=0
GCD(a,c) = 2
d-b= -3

2 does not divide -3 = No dependence
is not possible.

1537/,), AV 112 U5 A7 L) 2L 23,
4,6,8,10,12,14,16,18,20,22,.....

Dependence Analysis

= Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

= Objects are referenced using pointers

= Array indexing using another array a[bl[i]]

= Dependence may exist for some values of input,
but in reality the input never takes these values.

= When we want to know more than the possibility
of dependence (which write causes it?)

= Dependence analysis across procedure
boundaries

Dependence Analysis

= Sometimes, points-to analysis might help.

= We might be able to answer simpler questions,
or get some hints.

= Do 2 pointers point to the same list?
= Type information

= Information derived when the object was
allocated

= Pointer assignments

Software Pipelines

= Software pipelined loop chooses instructions
from different loop iterations, thus separating the
dependent instructions within one iteration of the

original loop
Horation
L Iharaticn
1 Tharation
L] Heration
2 Heration
4

Saftware-

pipiined

Auration

Software Piplines

Loop: L.D FO,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE

Before: Unrolled 3 times After: Software Pipelined Version

1 L.D FO,0(R1) L.D FO,0(R1)
g éDB_D Ei,goé? ADD.D F4,F0,F2
4 L.D Fo'fé(Rg) LD F0.-8(R1)
- AfJD D F/I‘FO F2 1 S.D F4,0(R1) ;Stores M[i]
é S D- F4’*8&R1) 2 ADD.D F4,F0,F2 ;Adds to M[i-1]
7 LD FO.-16(RD) 3 LD FO0,-16(R1);Loads M[i-2]
8 A[-)D D F4,FO F2 4 DADDUI R1,R1,#-8
9 S.0 FA-1BR1) 5 BNE RI1,R2,LOOP
10 DADDUI RI,R1,#-24 b k4, 0(RL)
11 BNE R1,R2,LOOP ADDD F4,F0,F2
S.D F4,-8(R1)

4 Software Pipelined loop iterations (2 iterations fewer)

Loop Body of software Pipelined Version

