
1Copyright © 2012, Elsevier Inc. All rights reserved.

Chapter 3

Instruction-Level Parallelism
and Its Exploitation

Computer Architecture
A Quantitative Approach, Fifth Edition

2Copyright © 2012, Elsevier Inc. All rights reserved.

Introduction

 Pipelining become universal technique in 1985
 Overlaps execution of instructions
 Exploits “Instruction Level Parallelism”

 Beyond this, there are two main approaches:
 Hardware-based dynamic approaches

 Used in server and desktop processors
 Not used as extensively in PMP processors

 Compiler-based static approaches
 Not as successful outside of scientific applications

Introduction

3Copyright © 2012, Elsevier Inc. All rights reserved.

Instruction-Level Parallelism

 When exploiting instruction-level parallelism,
goal is to minimize CPI
 Pipeline CPI =

 Ideal pipeline CPI +
 Structural stalls +
 Data hazard stalls +
 Control stalls

 Parallelism with basic block is limited
 Typical size of basic block = 3-6 instructions
 Must optimize across branches

Introduction

4Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Loop-Level Parallelism
 Unroll loop statically or dynamically
 Use SIMD (vector processors and GPUs)

 Challenges:
 Data dependency

 Instruction j is data dependent on instruction i if
 Instruction i produces a result that may be used by instruction j
 Instruction j is data dependent on instruction k and instruction k

is data dependent on instruction i

 Dependent instructions cannot be executed
simultaneously

Introduction

5Copyright © 2012, Elsevier Inc. All rights reserved.

Data Dependence

 Dependencies are a property of programs
 Pipeline organization determines if dependence

is detected and if it causes a stall

 Data dependence conveys:
 Possibility of a hazard
 Order in which results must be calculated
 Upper bound on exploitable instruction level

parallelism

 Dependencies that flow through memory
locations are difficult to detect

Introduction

6

Data Dependence

 Loop: L.D F0,0(R1)

 ADD.D F4,F0,F2

 S.D F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

Copyright © 2012, Elsevier Inc. All rights reserved.

7Copyright © 2012, Elsevier Inc. All rights reserved.

Name Dependence

 Two instructions use the same name but no flow
of information
 Not a true data dependence, but is a problem when

reordering instructions
 Antidependence: instruction j writes a register or

memory location that instruction i reads
 Initial ordering (i before j) must be preserved

 Output dependence: instruction i and instruction j
write the same register or memory location
 Ordering must be preserved

 To resolve, use renaming techniques

Introduction

8Copyright © 2012, Elsevier Inc. All rights reserved.

Other Factors

 Data Hazards
 Read after write (RAW)
 Write after write (WAW)
 Write after read (WAR)

 Control Dependence
 Ordering of instruction i with respect to a branch

instruction
 Instruction control dependent on a branch cannot be moved

before the branch so that its execution is no longer controller
by the branch

 An instruction not control dependent on a branch cannot be
moved after the branch so that its execution is controlled by
the branch

Introduction

9

Control Dependence

 Must preserve exception
behavior.

 We should not change
the exception behavior of
the program.

 We often relax this to
“reordering of instruction
must not raise new
exceptions”

 DADDU R2,R3,R4

 BEQZ R2,L1

 LW R1,0(R2)

 L1: ……

 No data dependence
prevents us from
exchanging BEQZ
and LW, but might
result in memory
protection exception

Copyright © 2012, Elsevier Inc. All rights reserved.

10Copyright © 2012, Elsevier Inc. All rights reserved.

Examples
 OR instruction dependent

on DADDU and DSUBU
 Preserving the order alone

is not sufficient (must have
the correct value in R1)

 Assume R4 isn’t used after
skip
 Possible to move DSUBU

before the branch

Introduction• Example 1:
DADDU R1,R2,R3
BEQZ R4,L
DSUBU R1,R1,R6

L: …
OR R7,R1,R8

• Example 2:
DADDU R1,R2,R3
BEQZ R12,skip
DSUBU R4,R5,R6
DADDU R5,R4,R9

skip:
OR R7,R8,R9

11Copyright © 2012, Elsevier Inc. All rights reserved.

Compiler Techniques for Exposing ILP

 Pipeline scheduling
 Separate dependent instruction from the source

instruction by the pipeline latency of the source
instruction

 Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

C
om

piler Techniques

No dependence
between iterations

MIPS code?

12Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Stalls

Loop: L.D F0,0(R1) 1
stall 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,0(R1) 6
DADDUI R1,R1,#-8 7
stall (assume integer load latency is 1) 8
BNE R1,R2,Loop 9

C
om

piler Techniques

13Copyright © 2012, Elsevier Inc. All rights reserved.

Pipeline Scheduling

Scheduled code:
Loop: L.D F0,0(R1) 1

DADDUI R1,R1,#-8 2
ADD.D F4,F0,F2 3
stall 4
stall 5
S.D F4,8(R1) 6
BNE R1,R2,Loop 7

C
om

piler Techniques

14Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling

 Loop unrolling
 Unroll by a factor of 4 (assume # elements is divisible by 4)
 Eliminate unnecessary instructions

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1) ;drop DADDUI & BNE

L.D F6,-8(R1)

ADD.D F8,F6,F2

S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

ADD.D F12,F10,F2

S.D F12,-16(R1) ;drop DADDUI & BNE

L.D F14,-24(R1)

ADD.D F16,F14,F2

S.D F16,-24(R1)

DADDUI R1,R1,#-32

BNE R1,R2,Loop

C
om

piler Techniques

 note: number
of live registers
vs. original loop

1 stall

2 stalls

15Copyright © 2012, Elsevier Inc. All rights reserved.

Loop Unrolling/Pipeline Scheduling

 Pipeline schedule the unrolled loop:

Loop: L.D F0,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)

L.D F14,-24(R1)

ADD.D F4,F0,F2

ADD.D F8,F6,F2

ADD.D F12,F10,F2

ADD.D F16,F14,F2

S.D F4,0(R1)

S.D F8,-8(R1)

DADDUI R1,R1,#-32

S.D F12,16(R1)

S.D F16,8(R1)

BNE R1,R2,Loop

C
om

piler Techniques

Loop iterations are
independent

16Copyright © 2012, Elsevier Inc. All rights reserved.

Strip Mining

 Unknown number of loop iterations?
 Number of iterations = n
 Goal: make k copies of the loop body
 Generate pair of loops:

 First executes n mod k times
 Second executes n / k times
 “Strip mining”

C
om

piler Techniques

17

Loop Level Parallelsim

 Loop-Level Parallelism (LLP) analysis focuses
on whether data accesses in later iterations of a
loop are data dependent on data values
produced in earlier iterations and possibly
making loop iterations independent.

 the computation in each iteration is independent of the
previous iterations and the loop is thus parallel. The use
of X[i] twice is within a single iteration.

 Thus loop iterations are parallel (or independent from each
other).

Copyright © 2012, Elsevier Inc. All rights reserved.

For(i=0;i<100;i++)

x[i]=x[i]+A;

18

Loop Level Parallelsim

 Loop-carried Dependence: A data dependence between
different loop iterations (data produced in earlier iteration used
in a later one).

 LLP analysis is important in software optimizations such as
loop unrolling since it usually requires loop iterations to be
independent.

 LLP analysis is normally done at the source code level or
close to it since assembly language and target machine code
generation introduces loop-carried name dependence in the
registers used for addressing and incrementing.

 Instruction level parallelism (ILP) analysis, on the other hand,
is usually done when instructions are generated by the
compiler

Copyright © 2012, Elsevier Inc. All rights reserved.

19

Loop Level Parallism

 S2 uses the value A[i+1], computed by S1 in the same iteration. This
data dependence is within the same iteration (not a loop-carried
dependence).

 does not prevent loop iteration parallelism.

 S1 uses a value computed by S1 in an earlier iteration, since iteration i
computes A[i+1] read in iteration i+1 (loop-carried dependence,
prevents parallelism). The same applies for S2 for B[i] and B[i+1]

 These two dependencies are loop-carried spanning more than one
iteration preventing loop parallelism.

Copyright © 2012, Elsevier Inc. All rights reserved.

S1

S2

S1

S2

Dependency Graph

Iteration # i i+1

A i+1

B i+1

A i+1 A i+1

Not Loop

Carried

Dependence

Loop-carried Dependence

for (i=1; i<=100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */

B[i+1] = B[i] + A[i+1];} /* S2 */

}

20

Loop Level parallelism

 for(i=0;i<=100;i++)

 A[i] = A[i] + B[i]; /* S1 */

 B[i+1] = C[i] + D[i]; /* S2 */

 S1 uses the value calculated by S2 in the
previous iteration (loop carried dependence)

 The dependence is not circular, S2 does not
depend on S1 in the previous iteration

Copyright © 2012, Elsevier Inc. All rights reserved.

21Copyright © 2012, Elsevier Inc. All rights reserved.

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

for (i=1; i<=100; i=i+1) {

A[i] = A[i] + B[i]; /* S1 */

B[i+1] = C[i] + D[i]; /* S2 */

}

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {

B[i+1] = C[i] + D[i];

A[i+1] = A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

A[1] = A[1] + B[1];

B[2] = C[1] + D[1];

A[2] = A[2] + B[2];

B[3] = C[2] + D[2];

A[99] = A[99] + B[99];

B[100] = C[99] + D[99];

Loop Start-up code

Loop Completion code

Iteration 1

Not Loop
Carried
Dependence

A[100] = A[100] + B[100];

B[101] = C[100] + D[100];

22

Finding Dependence

 Finding dependences in the program is very
important for renaming and executing
instructions in parallel.

 Arrays and pointers makes finding dependences
very difficult.

 Assume array indices are affine, which means
on the form ai+b where a and b are constant.

 GCD test can be used to detect dependences.

Copyright © 2012, Elsevier Inc. All rights reserved.

23

Finding Dependence

 Assume we stored an array with index value of
ai+b and loaded an array with an index value of
cj+d

 Are they pointing to the same location?

 Assume the loop limit is m,n

 Are there

Copyright © 2012, Elsevier Inc. All rights reserved.

dkcbjankjmkj  such that ,,

24

GCD test

 A simple and sufficient test for absence can be
found.

 If a loop dependence exists, then

Copyright © 2012, Elsevier Inc. All rights reserved.

)(divides),(bdacGCD 

25

GCD Test -- Example

Copyright © 2012, Elsevier Inc. All rights reserved.

for(i=1; i<=100; i=i+1) {
x[2*i+3] = x[2*i] * 5.0;

}

a = 2 b = 3 c = 2 d = 0

GCD(a, c) = 2

d - b = -3

2 does not divide -3  No dependence
is not possible.

5,7,9,11,13,15,17,19,21,23,….

4,6,8,10,12,14,16,18,20,22,…..

26

Dependence Analysis

 Dependence analysis is a very important tool for
exploiting LLP, it can not be used in these
situations

 Objects are referenced using pointers

 Array indexing using another array a[b[i]]

 Dependence may exist for some values of input,
but in reality the input never takes these values.

 When we want to know more than the possibility
of dependence (which write causes it?)

 Dependence analysis across procedure
boundaries

Copyright © 2012, Elsevier Inc. All rights reserved.

27

Dependence Analysis

 Sometimes, points-to analysis might help.

 We might be able to answer simpler questions,
or get some hints.

 Do 2 pointers point to the same list?

 Type information

 Information derived when the object was
allocated

 Pointer assignments

Copyright © 2012, Elsevier Inc. All rights reserved.

28

Software Pipelines
 Software pipelined loop chooses instructions

from different loop iterations, thus separating the
dependent instructions within one iteration of the
original loop

Copyright © 2012, Elsevier Inc. All rights reserved.

29

Software Piplines

Copyright © 2012, Elsevier Inc. All rights reserved.

Loop: L.D F0,0(R1)

ADD.D F4,F0,F2

S.D F4,0(R1)

DADDUI R1,R1,#-8

BNE

Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1)
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1)
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1)
10 DADDUI R1,R1,#-24
11 BNE R1,R2,LOOP

After: Software Pipelined Version
L.D F0,0(R1)
ADD.D F4,F0,F2
L.D F0,-8(R1)

1 S.D F4,0(R1) ;Stores M[i]
2 ADD.D F4,F0,F2 ;Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DADDUI R1,R1,#-8
5 BNE R1,R2,LOOP

S.D F4, 0(R1)
ADDD F4,F0,F2
S.D F4,-8(R1)

30

Software Pipelines

Copyright © 2012, Elsevier Inc. All rights reserved.

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

L.D

ADD.D

S.D

4 Software Pipelined loop iterations (2 iterations fewer)

1 2 3 4 5 6

1 2 3 4
finish

code

start-up

code

Loop Body of software Pipelined Version

