Implementation Report: Concurrent Genetic Algorithm with Island Migration

Markus Solbach

Laboratory for Active and Attentive Vision Department of Computer Science and Engineering York University, Toronto, Ontario, Canada

November 10, 2015

York University

Overview

- Genetic Algorithm revisited
- Genetic Algorithm Operators
- Concurrency
- Some Results
- Future Work

Figure : Evolution ||*i.livescience.com* (Oct. 5. 15)

> 2/25 York University

Markus Solbach

Genetic Algorithm revisited

3/25

Genetic Algorithm revisited

Generation 0

Markus Solbach

Implementation Report: Concurrent Genetic Algorithm with Island Migration

4/25

Genetic Algorithm revisited

Generation n

Markus Solbach

Implementation Report: Concurrent Genetic Algorithm with Island Migration

5/25

VLSI Design Problem

Figure :VLSI Design Problem

Markus Solbach

York University

VLSI Design Problem - Traveling Salesman Problem

Problem changed for good reasons:

- VLSI very little implementation details
- VLSI faced problems had nothing to do with concurrency
- TSP well known problem
- TSP rich implementation details in literature (sequential)
- TSP able to concentrade more on concurrency

Traveling Salesman Problem

Find a route on a map Requirements:

- Visit each City only once
- Find shortest path
- Complexity (20 city):
 - ► O(n!) (Brute Force, WC)
 - ▶ 20! = 2.432902*x*10¹⁸

TSP

Figure :TSP Map

8/25

Markus Solbach

Genetic Algorithm Operators

Markus Solbach

York University

9/25

Initialization

```
// create a random individual
\mathbf{2}
  public void generateIndividual() {
3
       // Go through all available Cities and add it to the tour
4
       for (int cityIndex = 0; cityIndex <</pre>
          CGaimDestinationPool.numberOfCities(); cityIndex++) {
5
         setCity(cityIndex, CGaimDestinationPool.getCity(cityIndex));
6
       3
7
       // shuffle the tour
8
9
       Collections.shuffle(tour);
  }
```

то	BE	AM	EH	SG	KL	MA

Figure : High Level Individual Representation

10/25

Mutation

Figure : High Level Mutation Representation

Crossover

Figure : High Level Crossover Representation

York University

Fitness Function

- Travelled distance over all city (inverse fitness)
- Each City has a location (x, y)
- Euclidean distance

• Fitness₁ =
$$\sum_{i=1}^{n} (x_{i-1} - x_i)^2 + (y_{i-1} - y_i)^2$$

York University

Genetic Algorithm Operators	Concurrency	Some Results	Future Work

14/25

Markus Solbach Implementation Report: Concurrent Genetic Algorithm with Island Migration

Genetic Algorithms rely heavily on random numbers

- Math.random() is not concurrent
- Multiple threads use similar or same seeds
- ▶ ThreadLocalRandom ¹
- Generator with an internally generated seed
- java.util.concurrent.ThreadLocalRandom

¹http://docs.oracle.com/javase/7/docs/api/java/util/ concurrent/ThreadLocalRandom.html

Markus Solbach

Implementation Report: Concurrent Genetic Algorithm with Island Migration

15/25

Threads and Islands

Each Thread represents one Island

- Genetic Algorithm (GA) Logic
- Implements Runnable
- Concurrent Execution

Markus Solbach

= GA's Island Migration extension

< <java>></java>
< <class>></class>
CGaimIsland
barrier : CyclicBarrier CGaimPopulation : population id : int
init() evolve() migration() @Override run()

Figure :Simplified UML-Class of CGaimIsland

Threads and Islands

Each Thread represents one Island

- Genetic Algorithm (GA) Logic
- Implements Runnable
- Concurrent Execution
- = GA's Island Migration extension

Figure :Island Migration overview

Threads and Barriers

Barriers² for synchronization

- new CyclicBarrier(# Islands)
- Waits that all Islands are ready
- Evolution \hookrightarrow random process

```
1 @Override
2 public void run() {
3 barrier.await();
4 /* start evolution */
5 this.evolve();
6 }
```

²http://docs.oracle.com/javase/7/docs/api/java/util/ concurrent/CyclicBarrier.html

Markus Solbach

Implementation Report: Concurrent Genetic Algorithm with Island Migration

18/25

Island Migration

Sequentially (as proposed)

- Dependens on epoch length
- Joins all Threads
- Avoids shared memory access
- Performs cyclic Migration
- Copies Individuals
- Java's array.clone()[i]

```
1 /* Wait for Threads */
2 for(int i = 0; i < numberIslands; i++)
3 {
4 thread[i].join();
5 }</pre>
```

Island Migration

Sequentially (as proposed)

- Dependens on epoch length
- Joins all Threads
- Avoids shared memory access
- Performs cyclic Migration
- Copies Individuals
- Java's array.clone()[i]

```
1 /* Perform cyclic Migration */
2 island[1].setMigrants()
3 = island[0].getMigrants();
4 ...
```

Some Results

Future Work

Some Results

21/25

Some Results (Island Migration)

Figure :4 Islands - 150 Individuals - 2 Migrants - 70 Generations Epoch (\approx 5 Sec.)

Some Results (Island Migration vs. Sequential)

Sequential vs. Island Migration

Figure :100 City - Sequential (150 Individuals) vs. 4 Islands (as before)

23/25

Markus Solbach

York University

Future Work

24/25

Future Work

- More tests / Parameter improvements
 - intel i7 (8 cores × 4GHz) using 8 Islands
 - ▶ 5 times faster than sequential GA on same machine
- More debugging
 - bugs in Migration
 - lack of .clone()
 - Þ ...

Execution time differences based on number of Islands

Markus Solbach

Implementation Report: Concurrent Genetic Algorithm with Island Migration

25/25