Concurrent Apriori Data Mining Algorithms

Vassil Halatchev

Department of Electrical Engineering and Computer Science

York University, Toronto

October 8, 2015

Outline

- Why it is important
- Introduction to Association Rule Mining (a Data Mining technique)
- Overview of Sequential Apriori algorithm
- The 3 Parallel Apriori algorithm implementations
- Future work

What is Data Mining?

- Mining knowledge from data
- Data mining [Han, 2001]
 - Process of extracting interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously unknown</u> and <u>potentially useful</u>) knowledge or patterns from data in large databases

Objectives of data mining:

- Discover knowledge that characterizes general properties of data
- Discover patterns on the previous and current data in order to make predictions on future data

Big Data Era

- Term introduced by Roger Magoulas in 2010
- "A massive volume of both structured and unstructured data that is so large it is difficult to process using traditional database and software techniques"-Webopedia
- Multicore machines allow for efficient concurrent computations, which require proper synchronization techniques, that can significantly reduce task completion times

Big Data Era

• 45 zettabytes (45 x 1000³ gigabytes) of data produced in 2020

Figure 1

Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020

Why Mine Association Rules?

► Objective:

Finding interesting co-occurring items (or objects, events) in a given data set.

► Examples:

- Given a database of transactions, each transaction is a list of items (purchased by a customer in a visit), you may find:
 - computer → financial_management_software [support=2%, confidence=60%]
- ▶ From a student database, you may find
 - $\underset{75\%}{\bullet} major(x, "CS") \land gpa(x, "A") \rightarrow has_taken(x, "DB") [1\%, 75\%]$

Association Rule Mining Applications

- Market basket analysis (e.g. Stock market, Shopping patterns)
- Medical diagnosis (e.g. Causal effect relationship)
- Census data (e.g. Population Demographics)
- Bio-sequences (e.g. DNA, Protein)
- Web Log (e.g. Fraud detection, Web page traversal patterns)

What Kind of Databases?

Transactional database TDB

TID	Items
100	f, a, c, d, g, i, m, p
200	a, b, c, f, l,m, o
300	b, f, h, j, o
400	b, c, k, s, p
500	a, f, c, e, l, p, m, n

- Itemset: a set of items
- A *transaction* is a tuple (tid, X)
 - Transaction ID tid
 - Itemset X
- A transactional database is a set of transactions
 - In many cases, a transaction database can be treated as a set of itemsets (ignore TIDs)
- Association rule from TDB (relates two itemsets):
 - {a, c, m} \rightarrow {l} [support=40%, confidence=66.7%]

Definition of Association Rule

• An association rule is of the form:

 $X \rightarrow Y$ [support, confidence]

where

- X ⊂ I, Y ⊂ I, X∩Y=Ø and I is a set of items (objects or events).
- support: probability that a transaction (or a record) contains X and Y, i.e.,

support $(X \rightarrow Y) = P(X \cup Y)$

confidence: conditional probability that a transaction (or a record) having X also contains Y, i.e.,

confidence(X \rightarrow Y)=P(Y|X)

 A rule associates one set of items (events) with another set of items (events)

Support and Confidence: Example

support($X \rightarrow Y$) = P($X \cup Y$) confidence($X \rightarrow Y$) = P(Y|X)

Transaction ID	Items Bought
2000	A,B,C
1000	A,C
4000	A,D
5000	B,E,F

Relative frequency is used to estimate the probability.

- ▶ $\{A\} \rightarrow \{C\}$ (50%, 66.7%)
- ▶ $\{C\} \rightarrow \{A\}$ (50%, 100%)
- ▶ $\{A, C\} \rightarrow \{B\}$ (25%, 50%)
- $\blacktriangleright \{A, B\} \rightarrow \{E\} \quad (0\%, 0\%)$

Mining Association Rules

Problem statement

Given a minimum support (min_sup), also called support threshold, and a minimum confidence (min_conf), also called confidence threshold, find all association rules that satisfy both min_sup and min_conf from a data set D.

How to Mine Association Rules

- ► A two-step process:
 - Find all frequent itemsets ---- the key step
 - Generate strong association rules from frequent itemsets.
- Example: given min_sup=50% and min_conf=50%

Transaction	ID Items Bought	
2000	A,B,C	
1000	A,C	
4000	A,D	
5000	B,E,F	

	Frequent Itemset	Support	
	{A}		75%
\diamond	{B}		50%
	{C}		50%
	{A, C}		50%

- Generate strong rules:
 - ▶ {A} \rightarrow {C} [support=50%, confidence=66.6%]
 - {C} \rightarrow {A} [support=50%, confidence=100%]

Candidate Generation

How to Generate Candidates? (i.e. How to Generate C_{k+1} from L_k)

- Given L_k = the set of frequent *k*-itemsets
- List the items in each itemset of L_k in an order

- Given L_k , generate C_{k+1} in two steps:
 - Join Step: Join L_k with L_k by joining two k-itemsets in L_k. Two k-itemsets are joinable if their first (k-1) items are the same and the last item in the first itemset is smaller than the last item in the second itemset (the condition for joining two members of L_k).
 Now, C₄={{1 2 3 4}, {1 3 4 5}}
 - Prune Step: Delete all candidates in C_{k+1} that have a non-frequent subset by checking all length-k subsets of a candidate
 - Now, $C_4 = \{\{1 \ 2 \ 3 \ 4\}\}$

Source: Data Mining CSE6412

Example of Candidate Generation

- ▶ *L*₄={*abcd*, *abcg*, *abdg*, *abef*, *abeh*, *acdg*, *bcdg*}
- Self-joining: $L_4 * L_4$
 - abcdg from abcd and abcg
 - *abefh* from *abef* and *aceh*
- Pruning:
 - *abefh* is removed because *abfh* or *aefh* or *befh* is not in
 L₄
- $C_5 = \{abcdg\}$

Apriori Algorithm

• Proposed by Agrawal and Srikant in 1994

My Paper

- Rakesh Agrawal and John C. Shafer. Parallel mining of association rules: Design, implementation and experience. Technical report, IBM, 1996.
- Rakesh Agrawal and John C Shafer. Parallel mining of association rules. *IEEE Transactions on Knowledge and Data Engineering*, (6):962–969, 1996.

Rakesh Agrawal

Source: Google Scholar

3 Parallel Apriori Algorithms

IMPORTANT: Algorithms implemented on a **shared-nothing multiprocessor** communicating via a **Message Passing Interface** (MPI)

- Count Distribution
 - Each processor calculates its **Candidate Set Counts** from its local Database and end of each pass sends out **Candidate Set Counts** to all other processors.

Data Distribution

• Each processor is assigned a **mutually exclusive partition of the Candidate Set** on which it computes the count and end of pass sends out **Candidate Set Tuple** to all other processors.

Candidate Distribution

• Both Candidate Set and Database is partitioned during some pass k, so that each processor can operate independently.

Notations

k-itemset	An itemset having k items.	
L _k	Set of frequent k-itemsets (those with minimum support).	
	Each member of this set has two fields: i) itemset and ii) support count.	
C_k	Set of candidate k-itemsets (potentially frequent itemsets).	
	Each member of this set has two fields: i) itemset and ii) support count.	
P	Processor with id i.	
D	The dataset local to the processor P ⁱ .	
DR	The dataset local to the processor P^{i} after repartition- ing.	
C_k^i	The candidate set maintained with the Processor P^{i} during the <i>k</i> th pass (there are <i>k</i> items in each candidate).	

Source: My Paper

Count Distribution Algorithm

Pass k = 1:

- 1. Processor P^i scans over its data partition D_i ; reads one tuple transaction (i.e. (TID,X)) at a time and building its local C_1^i and storing it in a hash-table (new entry is created if necessary).
- 2. At end of the pass every Pⁱ loads contents of into a buffer and sends it out to all other processors.
- 3. At the same time each P^i receives the send buffer from another processor and increments the count value of every element in its local C_1^i hash-table if this element is present in the buffer otherwise a new entry would be created.
- 4. P^i will now have the entire candidate set C_1 with global support counts for each candidate/element/itemset.

Step 2 and 3 require synchronization

Count Distribution Algorithm Cont. (Pass K = 1 Example)

Processor/	Node 1	
------------	--------	--

Processor/Node	2

Processor/Node 3

Processor/Node 1 at end of pass

Itemset	Support
{a}	15
{b}	5
{c}	7
{d]	2

Itemset	Support
{a}	5
{b}	2
{c}	1
{d]	3
{e}	6

Itemset	Support
{a}	2
{b}	1
{c}	4
{d]	9

Itemset	Support
{a}	22
{b}	8
{c}	12
{d]	14
{e}	6

Count Distribution Algorithm Cont.

Pass k > 1:

- 1. Every processor P^i generates C_k using frequent itemset L_{k-1} created at pass k 1
- 2. Processor Pⁱ goes over local database partition Dⁱ and develops local support count for candidates in C_k
- 3. Processor Pⁱ exchange local C_k counts with all other processor to develop global C_k counts. **Processors** are forced to synchronize in this step.
- 4. Each processor P^i now computes L_k from C_k .
- 5. Each processor P^i decides to continue to next pass or terminate (The decision will be identical as the processors all have identical L_k).

Data Distribution Algorithm

- **Pass k = 1**: Same as the Count Distribution Algorithm
- Pass k > 1:
- 1. Processor P^i generates C_k from L_{k-1} . Retaining only $1/N^{th}$ of the itemsets forming the candidates subset $C_k^{\ i}$ that it will count. The $C_k^{\ i}$ sets are all disjoint and the union of all $C_k^{\ i}$ sets is the original C_k .
- 2. Processor Pⁱ develops support counts for the itemsets in its local candidate set C_kⁱ using both local data pages and data pages received from other processors.
- 3. At end of the pass, each processor P^i calculates L_k^i using the local C_k^i . Again, all L_k^i sets are disjoint and the union of all L_k^i is L_k .
- Processors exchange L_kⁱ so that every processor has the complete L_k to generate C_{k+1} for next pass.
 Processors are forced to synchronize in this step.
- 5. Each processor Pⁱ can independently (but identically) decide whether to terminate or continue.

Candidate Distribution Algorithm

Pass k < m: Use either Count or Data distribution algorithm.</p>
Pass k = m:

- 1. Partition L_{k-1} among the N processors such that L_{k-1} sets are "well balanced". Important: For each itemset remember which processor was assigned to it.
- 2. Processor P^i generates C_k^i using only the L_{k-1} partition assigned to it.
- 3. P^i develops global counts for candidates in C_k^i and the database is repartitioned into DR^i at the same time.
- 4. After Pⁱ has processed local data and data received from other processors it posts N 1 asynchronous receive buffer to receive L_k^{j} from all other processors needed for the **pruning** C_{k+1}^{i} in the prune step of candidate generation.
- 5. Processor P^i computes L_k^i from C_k^i and asyncronosly broadcasts it to the other N 1 processors using N 1 asynchronous sends.

Candidate Distribution Algorithm Cont.

Pass k > m:

- Processor Pⁱ collects all frequent itemsets sent by other processors. They are used for the pruning step. Itemsets from some processor j can be not of length k – 1 due to processors being fast or slow, but Pⁱ keeps track of the longest length of itemsets received for every single processor.
- 2. Pⁱ generates C_k^{i} using local L_{k-1}^{i} . Pⁱ has to be careful during the pruning process as it could be that not all the L_{k-1}^{i} from all other processors. So when examining if a candidate should be pruned it needs to go back to the pass k = m and find out which processor was assigned to the current itemset when its length was m 1 and check if L_{k-1}^{i} has been received from this processor. (e.g. Let m = 2; $L_4 = \{abcd, abce, abde\}$ and we are looking at itemset $\{abcd\}$ then we have to go back to when the itemset was $\{ab\}$ (i.e. at pass k = m) to determine which processor was assigned to this itemset).
- Pⁱ makes a pass over DRⁱ and counts C_kⁱ. From C_kⁱ computes L_kⁱ and broadcast it to every other process via N − 1 asynchronous sends.

Pros and Cons of the Algorithms

Count Distribution

- **Pro:** Minimizes heavy data transfer between processors
- Con: Redundant Candidate Set counting
- Data Distribution
 - **Pro:** Utilizes Aggregate Memory by assigning each processor a mutually exclusive subset of the Candidate set
 - Con: Requires good communication network(high bandwidth/low latency) due to large size of data needed to be broadcast at each pass
- Candidate Distribution
 - **Pro:** Maximizes use of aggregate memory while limiting communication to a single redistribution pass. Eliminates synchronization costs that Count and Data must pay at end of every pass
 - Con(Post testing): it turns out the single redistribution pass takes its toll on the system

Looking Ahead

• Plan

- Implement all three algorithm
- Compare their performance (with each other; with sequential Apriori; with other sequential frequent pattern mining algorithms)
- Find out synchronization capabilities of the MPI (Message Protocol Interface) in a multithreaded environment
- Find out synchronization modifications needed of implementing the algorithms on a system that does not have a **shared-nothing multiprocessor** infrastructure.

Thank You!

Questions?