Concurrent Apriori Data Mining Algorithms

Vassil Halatchev
Department of Electrical Engineering and Computer Science
York University, Toronto
October 8, 2015
Outline

• Why it is important
• Introduction to Association Rule Mining (a Data Mining technique)
• Overview of Sequential Apriori algorithm
• The 3 Parallel Apriori algorithm implementations
• Future work
What is Data Mining?

- **Mining knowledge from data**
- **Data mining** [Han, 2001]
 - Process of extracting interesting (non-trivial, implicit, previously unknown and potentially useful) knowledge or patterns from data in large databases
- **Objectives of data mining:**
 - Discover knowledge that characterizes general properties of data
 - Discover patterns on the previous and current data in order to make predictions on future data

Source: Data Mining CSE6412
Big Data Era

• Term introduced by Roger Magoulas in 2010
• “A massive volume of both structured and unstructured data that is so large it is difficult to process using traditional database and software techniques” - Webopedia
• Multicore machines allow for efficient concurrent computations, which require proper synchronization techniques, that can significantly reduce task completion times
Big Data Era

- 45 zettabytes (45 x 1000^3 gigabytes) of data produced in 2020

Figure 1
Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020

Source: Oracle, 2012
Why Mine Association Rules?

Objective:
- Finding interesting co-occurring items (or objects, events) in a given data set.

Examples:
- Given a database of transactions, each transaction is a list of items (purchased by a customer in a visit), you may find:
 - computer \(\rightarrow\) financial_management_software
 [support=2%, confidence=60%]
- From a student database, you may find:
 - major(x, “CS”) \(\wedge\) gpa(x, “A”) \(\rightarrow\) has_taken(x, “DB”) [1%, 75%]
Association Rule Mining Applications

• **Market basket analysis** (e.g. Stock market, Shopping patterns)
• **Medical diagnosis** (e.g. Causal effect relationship)
• **Census data** (e.g. Population Demographics)
• **Bio-sequences** (e.g. DNA, Protein)
• **Web Log** (e.g. Fraud detection, Web page traversal patterns)
What Kind of Databases?

Transactional database TDB

<table>
<thead>
<tr>
<th>TID</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>f, a, c, d, g, i, m, p</td>
</tr>
<tr>
<td>200</td>
<td>a, b, c, f, l, m, o</td>
</tr>
<tr>
<td>300</td>
<td>b, f, h, j, o</td>
</tr>
<tr>
<td>400</td>
<td>b, c, k, s, p</td>
</tr>
<tr>
<td>500</td>
<td>a, f, c, e, l, p, m, n</td>
</tr>
</tbody>
</table>

- **Itemset**: a set of items
- A **transaction** is a tuple (tid, X)
 - Transaction ID tid
 - Itemset X
- A **transactional database** is a set of transactions
 - In many cases, a transaction database can be treated as a set of itemsets (ignore TIDs)

Association rule from TDB (relates two itemsets):

- \{a, c, m\} \rightarrow \{l\} [support=40\%, confidence=66.7\%]
Definition of Association Rule

An association rule is of the form:

\[X \rightarrow Y \] [support, confidence]

where

- \(X \subseteq I, Y \subseteq I, X \cap Y = \emptyset \) and \(I \) is a set of items (objects or events).
- **support**: probability that a transaction (or a record) contains \(X \) and \(Y \), i.e.,

 \[\text{support}(X \rightarrow Y) = P(X \cup Y) \]

- **confidence**: conditional probability that a transaction (or a record) having \(X \) also contains \(Y \), i.e.,

 \[\text{confidence}(X \rightarrow Y) = P(Y|X) \]

- A rule associates one set of items (events) with another set of items (events)

Source: Data Mining CSE6412
Support and Confidence: Example

\[
support(X \rightarrow Y) = P(X \cup Y) \\
\text{confidence}(X \rightarrow Y) = P(Y|X)
\]

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A,B,C</td>
</tr>
<tr>
<td>1000</td>
<td>A,C</td>
</tr>
<tr>
<td>4000</td>
<td>A,D</td>
</tr>
<tr>
<td>5000</td>
<td>B,E,F</td>
</tr>
</tbody>
</table>

- \(\{A\} \rightarrow \{C\}\) (50%, 66.7%)
- \(\{C\} \rightarrow \{A\}\) (50%, 100%)
- \(\{A, C\} \rightarrow \{B\}\) (25%, 50%)
- \(\{A, B\} \rightarrow \{E\}\) (0%, 0%)

Relative frequency is used to estimate the probability.

Source: Data Mining CSE6412
Mining Association Rules

Problem statement
Given a minimum support (min_sup), also called support threshold, and a minimum confidence (min_conf), also called confidence threshold, find all association rules that satisfy both min_sup and min_conf from a data set D.
How to Mine Association Rules

- A two-step process:
 - Find all frequent itemsets — the key step
 - Generate strong association rules from frequent itemsets.

- Example: given min_sup=50% and min_conf=50%

<table>
<thead>
<tr>
<th>Transaction ID</th>
<th>Items Bought</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>A, B, C</td>
</tr>
<tr>
<td>1000</td>
<td>A, C</td>
</tr>
<tr>
<td>4000</td>
<td>A, D</td>
</tr>
<tr>
<td>5000</td>
<td>B, E, F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequent Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{A}</td>
<td>75%</td>
</tr>
<tr>
<td>{B}</td>
<td>50%</td>
</tr>
<tr>
<td>{C}</td>
<td>50%</td>
</tr>
<tr>
<td>{A, C}</td>
<td>50%</td>
</tr>
</tbody>
</table>

- Generate strong rules:
 - \{A\} → \{C\} [support=50%, confidence=66.6%]
 - \{C\} → \{A\} [support=50%, confidence=100%]
Candidate Generation

How to Generate Candidates? (i.e. How to Generate C_{k+1} from L_k)

- Given L_k = the set of frequent k-itemsets
 - List the items in each itemset of L_k in an order

 $L_3 = $ \{1 2 3\} \{1 2 4\} \{1 3 4\} \{1 3 5\} \{2 3 4\}

- Given L_k, generate C_{k+1} in two steps:
 - **Join Step**: Join L_k with L_k by joining two k-itemsets in L_k. Two k-itemsets are joinable if their first ($k-1$) items are the same and the last item in the first itemset is smaller than the last item in the second itemset (the condition for joining two members of L_k).
 - Now, C_4 = \{1 2 3 4\}, \{1 3 4 5\}
 - **Prune Step**: Delete all candidates in C_{k+1} that have a non-frequent subset by checking all length-k subsets of a candidate
 - Now, C_5 = \{1 2 3 4\}

Example of Candidate Generation

- L_4 = \{abcd, abcg, abdg, abef, abeh, acdg, bcdg\}
- **Self-joining**: $L_4 \ast L_4$
 - $abcdn$ from abcd and abcg
 - $abefh$ from abef and aceh
- **Pruning**:
 - $abefh$ is removed because $abfh$ or $aefh$ or $befh$ is not in L_4
- C_5 = \{abcdg\}

Source: Data Mining CSE6412
Apriori Algorithm

• Proposed by Agrawal and Srikant in 1994

Apriori Algorithm (Flow Chart)

Apriori Algorithm Example

Imported steps:
- Generating candidates
- Counting supports of candidates by scanning DB

Source: Data Mining CSE6412
My Paper

3 Parallel Apriori Algorithms

IMPORTANT: Algorithms implemented on a shared-nothing multiprocessor communicating via a Message Passing Interface (MPI)

• Count Distribution
 • Each processor calculates its Candidate Set Counts from its local Database and end of each pass sends out Candidate Set Counts to all other processors.

• Data Distribution
 • Each processor is assigned a mutually exclusive partition of the Candidate Set on which it computes the count and end of pass sends out Candidate Set Tuple to all other processors.

• Candidate Distribution
 • Both Candidate Set and Database is partitioned during some pass k, so that each processor can operate independently.
Notations

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_k</td>
<td>Set of frequent k-itemsets (those with minimum support). Each member of this set has two fields: i) itemset and ii) support count.</td>
</tr>
<tr>
<td>C_k</td>
<td>Set of candidate k-itemsets (potentially frequent itemsets). Each member of this set has two fields: i) itemset and ii) support count.</td>
</tr>
<tr>
<td>P_i</td>
<td>Processor with id i.</td>
</tr>
<tr>
<td>D_i</td>
<td>The dataset local to the processor P_i</td>
</tr>
<tr>
<td>DR_i</td>
<td>The dataset local to the processor P_i after repartitioning.</td>
</tr>
<tr>
<td>C_k^i</td>
<td>The candidate set maintained with the Processor P_i during the kth pass (there are k items in each candidate).</td>
</tr>
</tbody>
</table>
Count Distribution Algorithm

Pass $k = 1$:

1. Processor P_i scans over its data partition D_i; reads one tuple transaction (i.e. (TID,X)) at a time and building its local C_{i1} and storing it in a hash-table (new entry is created if necessary).

2. At end of the pass every P_i loads contents of into a buffer and sends it out to all other processors.

3. At the same time each P_i receives the send buffer from another processor and increments the count value of every element in its local C_{i1} hash-table if this element is present in the buffer otherwise a new entry would be created.

4. P_i will now have the entire candidate set C_1 with global support counts for each candidate/element/itemset.

Step 2 and 3 require synchronization
Count Distribution Algorithm Cont.

(Pass $K = 1$ Example)

<table>
<thead>
<tr>
<th>Processor/Node 1</th>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{a}</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>{b}</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>{c}</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>{d}</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processor/Node 2</th>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{a}</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>{b}</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>{c}</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>{d}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>{e}</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processor/Node 3</th>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>{a}</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>{b}</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>{c}</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>{d}</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Itemset</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>{a}</td>
<td>22</td>
</tr>
<tr>
<td>{b}</td>
<td>8</td>
</tr>
<tr>
<td>{c}</td>
<td>12</td>
</tr>
<tr>
<td>{d}</td>
<td>14</td>
</tr>
<tr>
<td>{e}</td>
<td>6</td>
</tr>
</tbody>
</table>
Count Distribution Algorithm Cont.

Pass $k > 1$:

1. Every processor P_i generates C_k using frequent itemset L_{k-1} created at pass $k - 1$
2. Processor P_i goes over local database partition D_i and develops local support count for candidates in C_k
3. Processor P_i exchange local C_k counts with all other processor to develop global C_k counts. **Processors are forced to synchronize in this step.**
4. Each processor P_i now computes L_k from C_k.
5. Each processor P_i decides to continue to next pass or terminate (The decision will be identical as the processors all have identical L_k).
Data Distribution Algorithm

• **Pass k = 1:** Same as the Count Distribution Algorithm
• **Pass k > 1:**

1. Processor \(P_i \) generates \(C_k \) from \(L_{k-1} \). Retaining only \(1/N^{th} \) of the itemsets forming the candidates subset \(C_k^i \) that it will count. The \(C_k^i \) sets are all disjoint and the union of all \(C_k^i \) sets is the original \(C_k \).

2. Processor \(P_i \) develops support counts for the itemsets in its local candidate set \(C_k^i \) using both local data pages and data pages received from other processors.

3. At end of the pass, each processor \(P_i \) calculates \(L_k^i \) using the local \(C_k^i \). Again, all \(L_k^i \) sets are disjoint and the union of all \(L_k^i \) is \(L_k \).

4. Processors exchange \(L_k^i \) so that every processor has the complete \(L_k \) to generate \(C_{k+1} \) for next pass. **Processors are forced to synchronize in this step.**

5. Each processor \(P_i \) can independently (but identically) decide whether to terminate or continue.
Candidate Distribution Algorithm

Pass $k < m$: Use either Count or Data distribution algorithm.

Pass $k = m$:

1. Partition L_{k-1} among the N processors such that L_{k-1} sets are “well balanced”. **Important:** For each itemset remember which processor was assigned to it.

2. Processor P^i generates C^i_k using only the L_{k-1} partition assigned to it.

3. P^i develops global counts for candidates in C^i_k and the database is repartitioned into DR^i at the same time.

4. After P^i has processed local data and data received from other processors it posts $N - 1$ asynchronous receive buffer to receive L^i_k from all other processors needed for the **pruning** C^i_{k+1} in the prune step of candidate generation.

5. Processor P^i computes L^i_k from C^i_k and asynchronously broadcasts it to the other $N - 1$ processors using $N - 1$ asynchronous sends.
Candidate Distribution Algorithm Cont.

Pass $k > m$:

1. Processor P^i collects all frequent itemsets sent by other processors. They are used for the pruning step. Itemsets from some processor j can be not of length $k - 1$ due to processors being fast or slow, but P^i keeps track of the longest length of itemsets received for every single processor.

2. P^i generates C^i_k using local L^i_{k-1}. P^i has to be careful during the pruning process as it could be that not all the L^i_{k-1} from all other processors. So when examining if a candidate should be pruned it needs to go back to the pass $k = m$ and find out which processor was assigned to the current itemset when its length was $m - 1$ and check if L^i_{k-1} has been received from this processor.

 (e.g. Let $m = 2$; $L_4 = \{abcd, abce, abde\}$ and we are looking at itemset $\{abcd\}$ then we have to go back to when the itemset was $\{ab\}$ (i.e. at pass $k = m$) to determine which processor was assigned to this itemset).

3. P^i makes a pass over DR^i and counts C^i_k. From C^i_k computes L^i_k and broadcast it to every other process via $N - 1$ asynchronous sends.
Pros and Cons of the Algorithms

- **Count Distribution**
 - **Pro:** Minimizes heavy data transfer between processors
 - **Con:** Redundant Candidate Set counting

- **Data Distribution**
 - **Pro:** Utilizes Aggregate Memory by assigning each processor a mutually exclusive subset of the Candidate set
 - **Con:** Requires good communication network (high bandwidth/low latency) due to large size of data needed to be broadcast at each pass

- **Candidate Distribution**
 - **Pro:** Maximizes use of aggregate memory while limiting communication to a single redistribution pass. Eliminates synchronization costs that Count and Data must pay at end of every pass
 - **Con:** (Post testing): it turns out the single redistribution pass takes its toll on the system
Looking Ahead

• Plan
 • Implement all three algorithm
 • Compare their performance (with each other; with sequential Apriori; with other sequential frequent pattern mining algorithms)
 • Find out synchronization capabilities of the MPI (Message Protocol Interface) in a multithreaded environment
 • Find out synchronization modifications needed of implementing the algorithms on a system that does not have a shared-nothing multiprocessor infrastructure.
Thank You!

Questions?