
Concurrent Apriori

Data Mining Algorithms

Vassil Halatchev

Department of Electrical Engineering and Computer Science

York University, Toronto

October 8, 2015

Outline

• Why it is important

• Introduction to Association Rule Mining (a Data Mining technique)

• Overview of Sequential Apriori algorithm

• The 3 Parallel Apriori algorithm implementations

• Future work

What is Data Mining?

• Mining knowledge from data

• Data mining [Han, 2001]

• Process of extracting interesting (non-trivial, implicit, previously unknown and
potentially useful) knowledge or patterns from data in large databases

• Objectives of data mining:

• Discover knowledge that characterizes general properties of data

• Discover patterns on the previous and current data in order to make predictions on
future data

 Source: Data Mining CSE6412

Big Data Era

• Term introduced by Roger Magoulas in 2010

• “A massive volume of both structured and unstructured data that is so large

it is difficult to process using traditional database and software techniques”-

Webopedia

• Multicore machines allow for efficient concurrent computations, which

require proper synchronization techniques, that can significantly reduce task

completion times

Big Data Era

• 45 zettabytes (45 x 10003 gigabytes) of data produced in 2020

Why Mine Association Rules?

Source: Data Mining CSE6412

Association Rule Mining Applications

• Market basket analysis (e.g. Stock market, Shopping patterns)

• Medical diagnosis (e.g. Causal effect relationship)

• Census data (e.g. Population Demographics)

• Bio-sequences (e.g. DNA, Protein)

• Web Log (e.g. Fraud detection, Web page traversal patterns)

What Kind of Databases?

Source: Data Mining CSE6412

Definition of Association Rule

Source: Data Mining CSE6412

Support and Confidence: Example

Source: Data Mining CSE6412

Mining Association Rules

Source: Data Mining CSE6412

How to Mine Association Rules

Source: Data Mining CSE6412

Candidate Generation

How to Generate Candidates?

(i.e. How to Generate Ck+1 from Lk) Example of Candidate Generation

Source: Data Mining CSE6412

Apriori Algorithm

Apriori Algorithm (Flow Chart) Apriori Algorithm Example

Source: Data Mining CSE6412

• Proposed by Agrawal and Srikant in 1994

My Paper

• Rakesh Agrawal and John C. Shafer. Parallel mining of association rules:

Design, implementation and experience. Technical report, IBM, 1996.

• Rakesh Agrawal and John C Shafer. Parallel mining of association rules.

IEEE Transactions on Knowledge and Data Engineering, (6):962–969, 1996.

Rakesh Agrawal

Source: Google Scholar

3 Parallel Apriori Algorithms

• Count Distribution

• Each processor calculates its Candidate Set Counts from its local Database and end
of each pass sends out Candidate Set Counts to all other processors.

• Data Distribution

• Each processor is assigned a mutually exclusive partition of the Candidate Set on
which it computes the count and end of pass sends out Candidate Set Tuple to all
other processors.

• Candidate Distribution

• Both Candidate Set and Database is partitioned during some pass k, so that each processor
can operate independently.

IMPORTANT: Algorithms implemented on a shared-nothing multiprocessor communicating via a

Message Passing Interface (MPI)

Notations

Source: My Paper

Count Distribution Algorithm

1. Processor Pi scans over its data partition Di; reads one tuple transaction (i.e. (TID,X)) at a time and
building its local C1

i and storing it in a hash-table (new entry is created if necessary).

2. At end of the pass every Pi loads contents of into a buffer and sends it out to all other processors.

3. At the same time each Pi receives the send buffer from another processor and increments the count
value of every element in its local C1

i hash-table if this element is present in the buffer otherwise a
new entry would be created.

4. Pi will now have the entire candidate set C1
 with global support counts for each

candidate/element/itemset.

Pass k = 1:

Step 2 and 3 require synchronization

Count Distribution Algorithm Cont.
(Pass K = 1 Example)

Itemset Support

{a} 15

{b} 5

{c} 7

{d] 2

Processor/Node 1

Itemset Support

{a} 2

{b} 1

{c} 4

{d] 9

Processor/Node 2 Processor/Node 3
Processor/Node 1

 at end of pass

Itemset Support

{a} 5

{b} 2

{c} 1

{d] 3

{e} 6

Itemset Support

{a} 22

{b} 8

{c} 12

{d] 14

{e} 6

Count Distribution Algorithm Cont.

1. Every processor Pi generates Ck using frequent itemset Lk-1 created at pass k - 1

2. Processor Pi goes over local database partition Di and develops local support count for candidates in Ck

3. Processor Pi exchange local Ck counts with all other processor to develop global Ck counts. Processors

are forced to synchronize in this step.

4. Each processor Pi now computes Lk from Ck.

5. Each processor Pi decides to continue to next pass or terminate (The decision will be identical as the

processors all have identical Lk).

Pass k > 1:

Data Distribution Algorithm

1. Processor Pi generates Ck from Lk-1. Retaining only 1/Nth of the itemsets forming the candidates

subset Ck
i that it will count. The Ck

i sets are all disjoint and the union of all Ck
i sets is the original Ck.

2. Processor Pi develops support counts for the itemsets in its local candidate set Ck
i using both local

data pages and data pages received from other processors.

3. At end of the pass, each processor Pi calculates Lk
i using the local Ck

i. Again, all Lk
i sets are disjoint

and the union of all Lk
i is Lk.

4. Processors exchange Lk
i so that every processor has the complete Lk to generate Ck+1 for next pass.

Processors are forced to synchronize in this step.

5. Each processor Pi can independently (but identically) decide whether to terminate or continue.

• Pass k = 1: Same as the Count Distribution Algorithm

• Pass k > 1:

Candidate Distribution Algorithm

1. Partition Lk-1 among the N processors such that Lk-1 sets are “well balanced”. Important: For each itemset

remember which processor was assigned to it.

2. Processor Pi generates Ck
i using only the Lk-1 partition assigned to it.

3. Pi develops global counts for candidates in Ck
i and the database is repartitioned into DRi at the same time.

4. After Pi has processed local data and data received from other processors it posts N – 1 asynchronous receive

buffer to receive Lk
j from all other processors needed for the pruning Ck+1

i in the prune step of candidate

generation.

5. Processor Pi computes Lk
i from Ck

i and asyncronosly broadcasts it to the other N – 1 processors using N – 1

asynchronous sends.

Pass k < m: Use either Count or Data distribution algorithm.

Pass k = m:

Candidate Distribution Algorithm Cont.

1. Processor Pi collects all frequent itemsets sent by other processors. They are used for the pruning step.
Itemsets from some processor j can be not of length k – 1 due to processors being fast or slow, but Pi
keeps track of the longest length of itemsets received for every single processor.

2. Pi generates Ck
i using local Lk-1

i. Pi has to be careful during the pruning process as it could be that not
all the Lk-1

j from all other processors. So when examining if a candidate should be pruned it needs to go
back to the pass k = m and find out which processor was assigned to the current itemset when its length
was m – 1 and check if Lk-1

j has been received from this processor.
(e.g. Let m = 2; L4 = {abcd, abce,abde} and we are looking at itemset {abcd} then we have to go back to
when the itemset was {ab} (i.e. at pass k = m) to determine which processor was assigned to this itemset).

3. Pi makes a pass over DRi and counts Ck
i. From Ck

i computes Lk
i and broadcast it to every other process via

N – 1 asynchronous sends.

Pass k > m:

Pros and Cons of the Algorithms

• Count Distribution

• Pro: Minimizes heavy data transfer between processors

• Con: Redundant Candidate Set counting

• Data Distribution

• Pro: Utilizes Aggregate Memory by assigning each processor a mutually exclusive subset of the Candidate set

• Con: Requires good communication network(high bandwidth/low latency) due to large size of data needed to be broadcast
at each pass

• Candidate Distribution

• Pro: Maximizes use of aggregate memory while limiting communication to a single redistribution pass. Eliminates
synchronization costs that Count and Data must pay at end of every pass

• Con(Post testing): it turns out the single redistribution pass takes its toll on the system

Looking Ahead

• Plan

• Implement all three algorithm

• Compare their performance (with each other; with sequential Apriori; with other

sequential frequent pattern mining algorithms)

• Find out synchronization capabilities of the MPI (Message Protocol Interface) in a

multithreaded environment

• Find out synchronization modifications needed of implementing the algorithms on a

system that does not have a shared-nothing multiprocessor infrastructure.

Thank You!

Questions?

