Concurrent Apriori
Data Mining Algorithms

Vassil Halatchev
Department of Electrical Engineering and Computer Science

York University, Toronto

October 8, 2015

Outline

* Why it is important

Introduction to Association Rule Mining (a Data Mining technique)

* Overview of Sequential Apriort algorithm

The 3 Parallel Apriori algorithm implementations

* Future work

What 1s Data Mining?

* Mining knowledge from data

. * Data mining [Han, 2001]
* Process of extracting interesting (non-trivial, implicit, previously unknown and

potentially useful) knowledge or patterns from data in large databases

* Objectives of data mining:
* Discover knowledge that characterizes general properties of data

* Discover patterns on the previous and current data in order to make predictions on
future data

Source: Data Mining CSE6412

Big Data Era

* Term introduced by Roger Magoulas in 2010
. * “A masstve volume of both structured and unstructured data that 1s so large

it 1s difficult to process using traditional database and software techniques”-

Webopedia

* Multicore machines allow for efficient concurrent computations, which

require proper synchronization techniques, that can significantly reduce task
completion times

Big Data Era

* 45 zettabytes (45 x 1000° gigabytes) of data produced in 2020

Figure 1
Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020

Data in zettabytes (ZB)
50

45

40

35

30

25

20

15

2008 2009 2010 20M 2012 2013 2014 2015 2016 2017 2018 2019

Source: Oracle, 2012

Why Mine Association Rules?

» Objective:
» Finding interesting co-occurring items (or objects,

events) in a given data set.
» Examples:

» Given a database of transactions, each transaction is
a list of 1items (purchased by a customer 1n a visit),
you may find:

computer = financial management software
[support=2%., confidence=60%]
» From a student database, you may find
» major(x, “CS™) * gpa(x, “A”) = has_taken(x, “DB”) [1%,
75%]

Source: Data Mining CSE6412

T —— T T ———— —_— . T . . ——————

Association Rule Mining Applications

Market basket analysis (e.g. Stock market, Shopping patterns)

Medical diagnosis (e.g. Causal effect relationship)

Census data (e.g. Population Demographics)

* Bio-sequences (e.g. DNA, Protein)

Web Log (c.g. Fraud detection, Web page traversal patterns)

What Kind of Databases?

Transactional database TDB _
» [temset: a set of items

TID Items » A fransaction 1s a tuple
. 100 |f a,c,d g im,p (tid, X) | |
200 |a.b,c, £ Lm, o » Transaction ID tid

- » Itemset X
300 bt hj 0 » A transactional database 1s
400 |b,c,k, s, p a set of transactions
500 Ja,fic,e.l,p,mn » In many cases, a transaction

database can be treated as a
set of itemsets (ignore TIDs)

» Association rule from TDB (relates two itemsets):
» {a, ¢, m} — {1} [support=40%, confidence=66.7%]

Source: Data Mining CSE6412

Definition of Association Rule

Source: Data Mining CSE6412

» An association rule 1s of the form:
X = Y [support, confidence]
where

» XcLYcl XNnY=Y and | 1s a set of items (objects or
events).

» support: probability that a transaction (or a record) contains X
and Y, 1e.,
support (X > Y)=P(XU Y)
» confidence: conditional probability that a transaction (or a
record) having X also contains Y, 1.e.,
confidence(X — Y =P(Y|X)
» A rule associates one set of items (events) with another set of
items (events)

Support and Confidence: Example

Source: Data Mining CSE6412

support(X - ¥Y)=P(X U Y)
confidence(X = Y) = P(Y|X)

Transaction 1D Items Bought

2000 AB,C Relative frequency is
1000 A.C used tq !astimate the
4000 A.D probability.

5000 B,EF

w (A S (CY (50%, 66.7%)
v {CY D> 1AY (50%, 100%)
v {4 C) > (B) (25%, 50%)

d

w {4, B} > {E} (0%, 0%)

T

Mining Association Rules

. » Problem statement
Given a minimum support (min_sup), also called

support threshold, and a minimum confidence
(min_conf), also called confidence threshold,
find all association rules that satisty both
min_sup and min_conf from a data set D.

Source: Data Mining CSE6412

How to Mine Association Rules

» A two-step process:
» Find all frequent itemsets ---- the key step

» Generate strong association rules from frequent itemsets.

» Example: given min_sup=50% and min_conf=50%

Transaction 1D ltems Bought Frequent ltemset Support
2000 A.B,C {A} 75%
1000 A.C e {B} 50%
4000 A.D {C} 50%
5000 B.E.F {A, C} 50%

» Generate strong rules:
» {A} = {C} [support=50%, confidence=66.6%]
» {C} = {A} [support=50%, confidence=100%]

Source: Data Mining CSE6412

Candidate Generation

How to Generate Candidates?
(i.e. How to Generate C,,, from L,) Example of Candidate Generation

L,={abcd, abcg, abdg, abef, abeh, acdg, bcdg}

» Given L, = the set of frequent k-itemsets

7

» List the items in each itemset of L, in an order

o
) %} 2 3% » Self-joining: L,*L,
= 134
: : T usg » abedg from abcd and abcg
» Given L, generate C),, In two steps: {234}

» Join Step: Join L, with L, by joining two k-itemsets in L,. Two k- r ﬂbé’fh from abefand aceh

itemsets are joinable if their first (k-1) items are the same and the last » Pmﬂing:
item in the first itemset is smaller than the last item in the second
itemset (the condition for joining two members of ;). [ﬂbé’fh is removed because abﬂz or HE?ﬂ’t or bejh 1s not In
Now, C,={{1234}, {1345}} L,
» Prune Step: Delete all candidates in C,. ; that have a non-frequent
subset by checking all length-k subsets of a candidate > C5: {a deg }

» Now, C,={{1234}}
Source: Data Mining CSE6412

Apriort Algorithm

* Proposed by Agrawal and Srikant in 1994 |

Apriori Algorithm (Flow Chart) Apriort Algorithm Example

! . S Database D itemset/sup. .
||;1= set of frequent 1-itemset (scan DB) i(égngisof candidate k TID bliti;ms C; {1} 2 L; 'teﬁfEt SL;D.
=1 : set of f t k-
T iLt“emSSeetso requen 100|134 |ScanD| {2} 3 {2} 3
1 o 200(235 {3} 3 3 3
T 300(1235 {4y | 1 {5} 3
%]/ 4002 5 5. | 3 ' 3
Compute candidate set C, | Output L, ..., Ly | . ¢ itemset| sup G, MO Bl <:,',--
« C,..,=join L, with L, L, |itemset{sup {12} | 1 | ScanD {12}
" Prune G (13}] 2 (13} 2 | ~—— | {13
S 23} | 2 |— | (15} | 1 {15}
Cortt 27 25 | 3 23 | 2 {2 3}
Yes [mportant steps: 35 | 2 25 | 3 {2 5}
|Scan DBto get L,,; from C,.; | » Generating candidates {361 2 {3 5}
» Count.ing supports of candidates by C,litemset Scan D L; |itemset|sup Assume:
scanning DB {2 35) - {2 3 5} 2 min_sup_count = 2
Source: Data Mining CSE6412

My Paper

* Rakesh Agrawal and John C. Shafer. Parallel mining of association rules:

. Design, implementation and experience. Technical report, IBM, 1996.

* Rakesh Agrawal and John C Shafer. Parallel mining of association rules.
IEEE Transactions on Knowledge and Data Engineering, (6):962—969, 1996.

)

Rakesh Agrawal

Source: Google Scholar

3 Parallel Apriort Algorithms

IMPORTANT: Algorithms implemented on a shared-nothing multiprocessor communicating via a
Message Passing Interface (MPI)

* Count Distribution

* FEach processor calculates its Candidate Set Counts from its local Database and end

. of each pass sends out Candidate Set Counts to all other processors.
o

Data Distribution

* Each processor is assigned a mutually exclusive partition of the Candidate Set on
which it computes the count and end of pass sends out Candidate Set Tuple to all
other processors.

* (Candidate Distribution

* Both Candidate Set and Database is partitioned during some pass k, so that each processor
can operate independently.

Notations

Source: My Paper

k-itemset | An itemset having k items.
L, Set of frequent k-itemsets (those with minimum support).
Each member of this set has two fields:
i) itemset and ii) support count.
Cy Set of candidate k-itemsets (potentially frequent temsets).
Each member of this set has two fields:
i) itemset and ii) support count.
P Processor with id /.
o} The dataset local to the processor P"
DR The dataset local o the processor P’ after repartition-
ing.
c The candidate set maintained with the Processor P

during the kth pass (there are kitems in each candidate).

Count Distribution Algorithm

Pass k =1:

1. Processor P! scans over its data partition D;; reads one tuple transaction (i.e. (TTD,X)) at a time and
building its local C,' and storing it in a hash-table (new entry 1s created if necessary).

2. Atend of the pass every P! loads contents of into a buffer and sends it out to all other processors.

At the same time each P! receives the send buffer from another processor and increments the count
value of every element in its local C,' hash-table if this element is present in the buffer otherwise a
new entry would be created.

4. Plwill now have the entire candidate set C, with elobal support counts for each
. . 1 g PP
candidate/element/itemset.

Step 2 and 3 require synchronization

(Pass K = 1 Example)

Count Distribution Algorithm Cont.

Processor/Node 1

Processor/Node 2

Processor/Node 3

Processor/Node 1
at end of pass

Itemset | Support
{a} 15

{b} 5

{c} 7

{d] 2

Itemset | Support
{a) 5
{b} 2
{c} 1
{d] 3
{e} 6

Itemset | Support
{a) 2
{b} 1
{c} 4
{d] 9

Itemset Support
{a} 22

b} 8

{c} 12

{d] 14

e} 6

Count Distribution Algorithm Cont.

Pass k > 1:

1. Every processor P! generates C, using frequent itemset I,_; created at pass k - 1

2. Processor P! ooes over local database partition D' and develops local support count for candidates in C
2 p p pPp k

3. Processor P! exchange local C, counts with all other processor to develop global C, counts. Processors
are forced to synchronize in this step.

4. Each processor P! now computes I, from C,.

Each processor P! decides to continue to next pass or terminate (The decision will be identical as the
processors all have identical L,).

Data Distribution Algorithm

* Pass k = 1: Same as the Count Distribution Algorithm |
* Passk>1: |

1. Processor P! generates C, from L, ;. Retaining only 1/N™ of the itemsets forming the candidates
subset C,! that it will count. The C,! sets are all disjoint and the union of all C,! sets is the original C,.

2. Processor P! develops support counts for the itemsets in its local candidate set C,' using both local
data pages and data pages recetved from other processors.

3. Atend of the pass, each processor P! calculates L, using the local C,!. Again, all I, sets are disjoint
and the union of all I} is T,

4. Processors exchange 1,1 so that every processor has the complete I, to generate C, ,; for next pass.
Processors are forced to synchronize in this step.

5. Each processor P! can independently (but identically) decide whether to terminate or continue.

Candidate Distribution Algorithm

Pass k < m: Use either Count or Data distribution algorithm.
Pass k = m:

1. Partition I,_; among the N processors such that I, ; sets are ““well balanced”. Important: For each itemset

remember which processor was assigned to it.

2. Processor P! generates C,! using only the I, | partition assigned to it.

P! develops global counts for candidates in C,! and the database is repartitioned into DR! at the same time.

4. After P! has processed local data and data received from other processors it posts N — 1 asynchronous receive
buffer to receive 1] from all other processors needed for the pruning C, .,! in the prune step of candidate
generation.

5. Processor P! computes I} from C,! and asyncronosly broadcasts it to the other N — 1 processors using N — 1
asynchronous sends.

Candidate Distribution Algorithm Cont.

Pass k > m:

18

_ I

Processor P' collects all frequent itemsets sent by other processors. They are used for the pruning step.
Itemsets from some processor j can be not of length k — 1 due to processors being fast or slow, but P!
keeps track of the longest length of itemsets received for every single processot.

P! generates C,.! using local L,_;'. P’ has to be careful during the pruning process as it could be that not
all the L,_,J fromm all other processors. So when examining if a candidate should be pruned it needs to go
back to the pass k = m and find out which processor was assigned to the current itemset when its length
was m — 1 and check if I, ; has been received from this processor.

(eigr Betmis 2l s {abcd abce,abde} and we are looking at itemset {abcd} then we have to go back to
when the itemset was {ab} (i.e. at pass k = m) to determine which processor was assigned to this itemset).

P! makes a pass over DR! and counts C,!. From C,! computes L,' and broadcast it to every other process via
p = & p K B p
N — 1 asynchronous sends.

Pros and Cons of the Algorithms

Count Distribution
* Pro: Minimizes heavy data transfer between processors

* Con: Redundant Candidate Set counting

Data Distribution

* Pro: Utlizes Aggregate Memory by assigning each processor a mutually exclusive subset of the Candidate set

* Con: Requires good communication network(high bandwidth/low latency) due to large size of data needed to be broadcast
at each pass

Candidate Distribution

* Pro: Maximizes use of aggregate memory while limiting communication to a single redistribution pass. Eliminates
synchronization costs that Count and Data must pay at end of every pass

* Con(Post testing): it turns out the single redistribution pass takes its toll on the system

Looking Ahead

* Plan

* Implement all three algorithm

* Compare their performance (with each other; with sequential Apriori; with other
sequential frequent pattern mining algorithms)

* Find out synchronization capabilities of the MPI (Message Protocol Interface) in a
multithreaded environment

* Find out synchronization modifications needed of implementing the algorithms on a
system that does not have a shared-nothing multiprocessor infrastructure.

Thank Youl

Questions?

