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REVIEW -- NEURAL NETWORK TRAINING

 Forward phase

 𝑍𝑗
(𝑙+1)

= 𝐹  𝑖𝑤𝑖𝑗 ∙ 𝑍𝑖
𝑙
+ 𝑏𝑗

Where 𝐹 𝑥 is the nonlinear activation function

input

output
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REVIEW -- NEURAL NETWORK TRAINING

 Error back propagation

 𝛿𝑘
(𝑜𝑢𝑡)

= 𝑍𝑘
(𝑜𝑢𝑡)

− 𝑇𝑘
(𝑜𝑢𝑡)

 𝛿𝑖
(𝑙)
= 𝐹′ 𝑍𝑖

𝑙
∙  𝑗𝑤𝑖𝑗 ∙ 𝛿𝑗

𝑙+1

 Where  𝐹′ 𝑥 is the derivative of the activation function

 𝑇 is the desired output vector

 Weight updating

 ∆𝑤𝑖𝑗 = 𝑍𝑖
(𝑙)
∙ 𝛿𝑗

(𝑙+1)

 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝛾 ∙ ∆𝑤𝑖𝑗

 Where 𝛾 is the learning rate
input

output
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REVIEW -- SEQUENTIAL TRAINING VS. CONCURRENT TRAINING

Sequential training Concurrent training
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BROAD VIEW OF THE IMPLEMENTATION

 There are 3 major components in our implementation:

 The neural network representation: package of classes that form a neural network.

 Sequential trainers: classes that implement the sequential training algorithm.

 Concurrent trainers: classes that implement the concurrent training algorithm.
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NEURAL NETWORK REPRESENTATION
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NEURAL NETWORK REPRESENTATION

 Main class that represents a multi-layer 

perceptron.

 Has attributes representing the components 

of a neural network.

 Weights

 Biases

 Activation Functions
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NEURAL NETWORK REPRESENTATION

 Represents a weight matrix

 Support forward/backward multiplications
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THE SEQUENTIAL TRAINER
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THE SEQUENTIAL TRAINER

 Divide training into 3 layers:

 train() for the whole training process

 trainEpoch() for the training of each epoch

 trainBatch() for the training of each mini-batch
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THE CONCURRENT TRAINER
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THE CONCURRENT TRAINER

 Similar to the sequential trainer.

 Keep references to the monitor object and 

a thread pool.

 Concurrency occur within the trainBatch()

method.
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THE CONCURRENT TRAINER -- DIVIDING TASKS

 Implements the java.lang.Runnable

interface

 Represents a training task for worker thread.

 Keep references to the monitor object and 

the global shared variables for update 

statistics.
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THE CONCURRENT TRAINER -- COLLECTING STATISTICS

 The update statistics are accumulated locally within each task.

 Then update in the shared global variables concurrently upon finish of the task.

 Need synchronization: synchronized blocks, compare and set etc.
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THE CONCURRENT TRAINER -- USING MONITOR
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THE CONCURRENT TRAINER -- USING THREAD POOL

 Repeatedly creating and destroying threads can waste a lot of resource and time.

 Can pre-define a fixed size thread pool to avoid this problem.
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TESTING

 The concurrent training algorithm only parallelizes the computations over data samples within 

each mini-batch.

 The computed update statistics should be the same for both the sequential and concurrent 

algorithms.

 Define the concurrent implementation as correct if the model trained by the concurrent trainer 

is equivalent to the same model trained by the sequential trainer.

 Two models are considers equivalent if the differences between all their weights and biases 

are within some small error 𝜀.
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TESTING

 Have ran 100 

comparison tests and all 

of them are considered 

equal.

19



FUTURE WORK

 Run the sequential and the concurrent algorithm on a multicore machine to see how much 

training time can be reduced by using the concurrent algorithm.
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