
IMPLEMENTATION OF A PARALLEL BATCH TRAINING

ALGORITHM FOR DEEP NEURAL NETWORK

YUPING LIN

IFLYTEK LABORATORY FOR NEURAL COMPUTING FOR MACHINE LEARNING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY, TORONTO

NOVEMBER 10, 2015
1

OUTLINE

 Review

 Neural Network Representation

 Sequential Trainer

 Concurrent Trainer

 Dividing tasks

 Collecting statistics

 Using monitor

 Using thread pool

 Testing

 Future Work

2

REVIEW -- NEURAL NETWORK TRAINING

 Forward phase

 𝑍𝑗
(𝑙+1)

= 𝐹 𝑖𝑤𝑖𝑗 ∙ 𝑍𝑖
𝑙
+ 𝑏𝑗

Where 𝐹 𝑥 is the nonlinear activation function

input

output

3

REVIEW -- NEURAL NETWORK TRAINING

 Error back propagation

 𝛿𝑘
(𝑜𝑢𝑡)

= 𝑍𝑘
(𝑜𝑢𝑡)

− 𝑇𝑘
(𝑜𝑢𝑡)

 𝛿𝑖
(𝑙)
= 𝐹′ 𝑍𝑖

𝑙
∙ 𝑗𝑤𝑖𝑗 ∙ 𝛿𝑗

𝑙+1

 Where 𝐹′ 𝑥 is the derivative of the activation function

 𝑇 is the desired output vector

 Weight updating

 ∆𝑤𝑖𝑗 = 𝑍𝑖
(𝑙)
∙ 𝛿𝑗

(𝑙+1)

 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝛾 ∙ ∆𝑤𝑖𝑗

 Where 𝛾 is the learning rate
input

output

4

REVIEW -- SEQUENTIAL TRAINING VS. CONCURRENT TRAINING

Sequential training Concurrent training
5

trainer

Weight
update

VS. Master

trainer
Worker

trainer

Weight
update

Send train data

Collect statistics

Worker

trainer

Worker

trainer
…

BROAD VIEW OF THE IMPLEMENTATION

 There are 3 major components in our implementation:

 The neural network representation: package of classes that form a neural network.

 Sequential trainers: classes that implement the sequential training algorithm.

 Concurrent trainers: classes that implement the concurrent training algorithm.

6

NEURAL NETWORK REPRESENTATION

7

NEURAL NETWORK REPRESENTATION

 Main class that represents a multi-layer

perceptron.

 Has attributes representing the components

of a neural network.

 Weights

 Biases

 Activation Functions

8

NEURAL NETWORK REPRESENTATION

 Represents a weight matrix

 Support forward/backward multiplications

9

THE SEQUENTIAL TRAINER

10

THE SEQUENTIAL TRAINER

 Divide training into 3 layers:

 train() for the whole training process

 trainEpoch() for the training of each epoch

 trainBatch() for the training of each mini-batch

11

THE CONCURRENT TRAINER

12

THE CONCURRENT TRAINER

 Similar to the sequential trainer.

 Keep references to the monitor object and

a thread pool.

 Concurrency occur within the trainBatch()

method.

13

THE CONCURRENT TRAINER -- DIVIDING TASKS

 Implements the java.lang.Runnable

interface

 Represents a training task for worker thread.

 Keep references to the monitor object and

the global shared variables for update

statistics.

14

THE CONCURRENT TRAINER -- COLLECTING STATISTICS

 The update statistics are accumulated locally within each task.

 Then update in the shared global variables concurrently upon finish of the task.

 Need synchronization: synchronized blocks, compare and set etc.

15

THE CONCURRENT TRAINER -- USING MONITOR

16

THE CONCURRENT TRAINER -- USING THREAD POOL

 Repeatedly creating and destroying threads can waste a lot of resource and time.

 Can pre-define a fixed size thread pool to avoid this problem.

17

TESTING

 The concurrent training algorithm only parallelizes the computations over data samples within

each mini-batch.

 The computed update statistics should be the same for both the sequential and concurrent

algorithms.

 Define the concurrent implementation as correct if the model trained by the concurrent trainer

is equivalent to the same model trained by the sequential trainer.

 Two models are considers equivalent if the differences between all their weights and biases

are within some small error 𝜀.

18

TESTING

 Have ran 100

comparison tests and all

of them are considered

equal.

19

FUTURE WORK

 Run the sequential and the concurrent algorithm on a multicore machine to see how much

training time can be reduced by using the concurrent algorithm.

20

