
TESTING THE IMPLEMENTATIONS OF A PARALLEL BATCH 

TRAINING ALGORITHM FOR DEEP NEURAL NETWORK

YUPING LIN

IFLYTEK LABORATORY FOR NEURAL COMPUTING FOR MACHINE LEARNING

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

YORK UNIVERSITY, TORONTO

DECEMBER 1, 2015
1



OUTLINE

 Review

 Testing scheme

 Metric

 parameters

 Experiment setup

 Data set

 Testing harness

 Testing environment

 Implementations to be tested

 Results

2



REVIEW OF THE ALGORITHM

 Concurrent training

Master

trainer
Worker

trainer

Weight
update

Send train data

Collect statistics

Worker

trainer

Worker

trainer
…

3



TESTING SCHEME

 Use response time as testing metric

 The response time in this experiment is defined as the time used to train one epoch

 Response time is used because:

 The training of epochs are serialized steps

 We are interested in minimizing the training time

4



TESTING SCHEME

 There are 2 parameters that can affect the response time:

 Number of threads used

 Mini-batch size

 Measure

 Response time vs. number of threads used

 Response time vs. mini-batch size

5



EXPERIMENT SETUP

 Use MNIST data set for hand written digits recognition task

 The data set consist of 60,000 28x28 pixel images for training and 10,000 images for testing.

 The samples are classified into 10 categories: 0 ~ 9

 Network model size : 784-300-300-10

6



EXPERIMENT SETUP

 The testing is only measured on the training of MLP, since the implementation of RBM is similar 

to the implementation of MLP.

 The testing harness:

 Read in data

 For n runs of test

 Create model and trainer

 Ask trainer to perform full training process

 Trainer train epoch by epoch

 Time is measured only at the beginning and the end of the trainEpoch() method.

 Discard the first run of test

 The mean and standard deviation of response time are computed over all the response time 

measured in the remaining runs of test 7



EXPERIMENT SETUP

 Experiment is conducted on the Intel Manycore Testing Lab (MTL)

 Cores available: 40; Cores used: 20

 OS: Linux

 JVM version: 1.7.0_01

 VM argument: -d64 -server -Xms1G -Xmx1G

8



EXPERIMENT SETUP

 Implementations to be tested:

 SeqMLPTrainer (baseline): implementation of the sequential training algorithm

 ConMLPTrainer: implementation of the parallel batch training algorithm that use synchronized blocks to 

synchronize access to shared variables

 CASConMLPTrainer: implementation of the parallel batch training algorithm that use compare & set to 

synchronize access to shared variables

 DummyMLPTrainer: does nothing in the trainEpoch() method

9



EXPERIMENT RESULTS

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

Number of threads

A
ve

ra
g
e

 r
e
s
p

o
n

s
e

 t
im

e
 (

s
e
c
)

Average response time vs. Number of threads (mini-batch size = 500, averaged over 10 epochs)

 

 

Synchronized blocks

Compare and set

Sequential implementation

Dummy implementation

10



EXPERIMENT RESULTS

 The synchronized blocks implementation performs generally better than the compare and set 

implementation.

 This phenomenon is probably due the increased contention when using more threads.

 The best average response time of 10.07 sec/epoch is reached by the synchronized blocks 

implementation when using 18 threads.

11



EXPERIMENT RESULTS

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
0

5

10

15

20

25

Mini-batch Size

A
ve

ra
g
e

 r
e
s
p

o
n

s
e

 t
im

e
 (

s
e
c
)

Average response time vs. Mini-batch Size (number of threads = 18, averaged over 10 epochs)

 

 

Synchronized blocks

12



EXPERIMENT RESULTS

 The average response time decreases as the size of mini-batch increases.

 The average response time asymptotically approaching around 6 sec/epoch, which is more 

that 10 times faster than the sequential implementation.

13



EXPERIMENT RESULTS

 Parallelization efficiency:

 𝐸 =
 𝑡𝑠𝑒𝑞 𝑡𝑐𝑜𝑛

𝑛𝑇ℎ𝑟
=

 70.41 𝑠𝑒𝑐 10.07 𝑠𝑒𝑐

18
= 38.84%

14



EXPERIMENT RESULTS

 The classification performance of the trained model:

 Only reaches 11.35% accuracy without pre-trained by RBM (trained 100 epochs)

 Achieved 94.52% accuracy when pre-trained by RBM (trained 100 epochs)

 Stat-of-the-art: 99.77% accuracy by Multi-column DNN (D. Ciresan et al., 2012)

15



THANK YOU

16


