
CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent Singly-Linked Lists

Amgad Rady

DisCoVeri Group
Department of Electrical Engineering and Computer Science

York University

November 5, 2015



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Outline

1 Introduction
Singly-Linked Lists
Insertion
Deletion

2 Concurrent SLL’s
Concurrency Primitives
Naïve Implementation of Concurrent SLL’s

3 Harris’s algorithm

4 F&R’s Algorithm

5 Conclusion



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Introduction to Singly-Linked Lists

Why implement concurrent singly-linked lists?
SLL’s are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)
SLL’s are themselves part of larger data structures
(hash tables, skip lists.)
SLL’s are simple.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Introduction to Singly-Linked Lists

Why implement concurrent singly-linked lists?
SLL’s are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)
SLL’s are themselves part of larger data structures
(hash tables, skip lists.)
SLL’s are simple.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Introduction to Singly-Linked Lists

Why implement concurrent singly-linked lists?
SLL’s are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)
SLL’s are themselves part of larger data structures
(hash tables, skip lists.)
SLL’s are simple.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Introduction to Singly-Linked Lists

Why implement concurrent singly-linked lists?
SLL’s are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)
SLL’s are themselves part of larger data structures
(hash tables, skip lists.)
SLL’s are simple.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

SLL Operations: INSERT

Inserting the node containing 2 into the list {1,3,4}. First,
find the appropriate successor for 2 by searching the list
from the head.

1

2

3 4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

SLL Operations: INSERT

Inserting the node containing 2 into the list {1,3,4}. Next,
swing the pointer from the predecessor (1) to the node (2).

1

2

3 4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

SLL Operations: DELETE

Deleting the node containing 2 from the list {1,2,3,4}. First,
find the node’s predecessor by searching the list from the
head.

1 2 3 4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

SLL Operations: DELETE

Deleting the node containing 2 from the list {1,2,3,4}.
Next, swing (2)’s predecessor’s pointer to (2)’s successor.

1 2 3 4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent SLL’s

Sequential singly-linked lists are a very simple data
structure.
We would like to be able to “lift” SLL’s into a concurrent
setting without using expensive abstractions like locks,
semaphores, monitors, etc.
In addition to being costly, these abstractions do not
have the property of lock-freedom.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent SLL’s

Sequential singly-linked lists are a very simple data
structure.
We would like to be able to “lift” SLL’s into a concurrent
setting without using expensive abstractions like locks,
semaphores, monitors, etc.
In addition to being costly, these abstractions do not
have the property of lock-freedom.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent SLL’s

Sequential singly-linked lists are a very simple data
structure.
We would like to be able to “lift” SLL’s into a concurrent
setting without using expensive abstractions like locks,
semaphores, monitors, etc.
In addition to being costly, these abstractions do not
have the property of lock-freedom.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Lock-freedom

Definition (Lock-freedom)

An algorithm is lock-free if at any configuration in an
execution of the algorithm, if there is at least one processor
that has not crashed then some processor will finish its
operation in a finite number of steps.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent SLL’s cont.

Can we construct a concurrent implementation of SLL’s
using only COMPARE & SWAP?
Yes! But it’s very difficult.
Let’s consider a naïve implementation replacing READ’s
and WRITES’s with COMPARE & SWAP.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent SLL’s cont.

Can we construct a concurrent implementation of SLL’s
using only COMPARE & SWAP?
Yes! But it’s very difficult.
Let’s consider a naïve implementation replacing READ’s
and WRITES’s with COMPARE & SWAP.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent SLL’s cont.

Can we construct a concurrent implementation of SLL’s
using only COMPARE & SWAP?
Yes! But it’s very difficult.
Let’s consider a naïve implementation replacing READ’s
and WRITES’s with COMPARE & SWAP.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent INSERT and DELETE

We delete the node (2) and insert the node (3) concurrently
into the list {1,2,4}.

1 2

3

4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Concurrent INSERT and DELETE

The resulting list is {1,4}, rather than the correct {1,3,4}.

1 2

3

4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

What Went Wrong?

The issue in this example is that the INSERT procedure
has no indication that the node (2) is about to be
deleted.
We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.
Once a node has been marked, its pointer cannot be
changed.
The next section presents a solution due to Timothy
Harris.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

What Went Wrong?

The issue in this example is that the INSERT procedure
has no indication that the node (2) is about to be
deleted.
We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.
Once a node has been marked, its pointer cannot be
changed.
The next section presents a solution due to Timothy
Harris.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

What Went Wrong?

The issue in this example is that the INSERT procedure
has no indication that the node (2) is about to be
deleted.
We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.
Once a node has been marked, its pointer cannot be
changed.
The next section presents a solution due to Timothy
Harris.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

What Went Wrong?

The issue in this example is that the INSERT procedure
has no indication that the node (2) is about to be
deleted.
We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.
Once a node has been marked, its pointer cannot be
changed.
The next section presents a solution due to Timothy
Harris.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

Deleting the node containing 2 from the list {1,2,3,4}.
Mark the node.

1 2 3 4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

Deleting the node containing 2 from the list {1,2,3,4}.
Mark the node.

1 2 3 4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

1 2 3

4

5



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

1 2 3

4

5



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

1 2 3 5



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

1 2 3 5

4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

1 2 3 5

4



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

1 2 3 5



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

1 2 3



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

1 2 3



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

1 2 3



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

1 2 3



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

DELETE Procedure

1 2 3



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

F&R Performance

What does this increase in complexity give us?
In Harris’s algorithm, the average cost of an operation
is Ω(n̄ · c̄) where n̄ is the average length of the list
during an execution and c̄ is the average contention.
In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n̄ + c̄).
Is this increase in performance worth the increase in
complexity?



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

F&R Performance

What does this increase in complexity give us?
In Harris’s algorithm, the average cost of an operation
is Ω(n̄ · c̄) where n̄ is the average length of the list
during an execution and c̄ is the average contention.
In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n̄ + c̄).
Is this increase in performance worth the increase in
complexity?



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

F&R Performance

What does this increase in complexity give us?
In Harris’s algorithm, the average cost of an operation
is Ω(n̄ · c̄) where n̄ is the average length of the list
during an execution and c̄ is the average contention.
In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n̄ + c̄).
Is this increase in performance worth the increase in
complexity?



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

F&R Performance

What does this increase in complexity give us?
In Harris’s algorithm, the average cost of an operation
is Ω(n̄ · c̄) where n̄ is the average length of the list
during an execution and c̄ is the average contention.
In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n̄ + c̄).
Is this increase in performance worth the increase in
complexity?



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Introduction
Singly-Linked Lists

Insertion

Deletion

Concurrent
SLL’s
Concurrency
Primitives

Naïve
Implementation of
Concurrent SLL’s

Harris’s
algorithm

F&R’s
Algorithm

Conclusion

The End

Questions?


	Introduction
	Singly-Linked Lists
	Insertion
	Deletion

	Concurrent SLL's
	Concurrency Primitives
	Naïve Implementation of Concurrent SLL's

	Harris's algorithm
	F&R's Algorithm
	Conclusion

