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Introduction to Singly-Linked Lists

Why implement concurrent singly-linked lists?
SLL’s are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)
SLL’s are themselves part of larger data structures
(hash tables, skip lists.)
SLL’s are simple.
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SLL Operations: INSERT

Inserting the node containing 2 into the list {1,3,4}. First,
find the appropriate successor for 2 by searching the list
from the head.

1

2

3 4
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SLL Operations: INSERT

Inserting the node containing 2 into the list {1,3,4}. Next,
swing the pointer from the predecessor (1) to the node (2).

1

2

3 4
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SLL Operations: DELETE

Deleting the node containing 2 from the list {1,2,3,4}. First,
find the node’s predecessor by searching the list from the
head.

1 2 3 4
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SLL Operations: DELETE

Deleting the node containing 2 from the list {1,2,3,4}.
Next, swing (2)’s predecessor’s pointer to (2)’s successor.

1 2 3 4
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Concurrent SLL’s

Sequential singly-linked lists are a very simple data
structure.
We would like to be able to “lift” SLL’s into a concurrent
setting without using expensive abstractions like locks,
semaphores, monitors, etc.
In addition to being costly, these abstractions do not
have the property of lock-freedom.
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Lock-freedom

Definition (Lock-freedom)

An algorithm is lock-free if at any configuration in an
execution of the algorithm, if there is at least one processor
that has not crashed then some processor will finish its
operation in a finite number of steps.
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Concurrent SLL’s cont.

Can we construct a concurrent implementation of SLL’s
using only COMPARE & SWAP?
Yes! But it’s very difficult.
Let’s consider a naïve implementation replacing READ’s
and WRITES’s with COMPARE & SWAP.
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Concurrent INSERT and DELETE

We delete the node (2) and insert the node (3) concurrently
into the list {1,2,4}.

1 2

3

4
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Concurrent INSERT and DELETE

The resulting list is {1,4}, rather than the correct {1,3,4}.

1 2

3
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What Went Wrong?

The issue in this example is that the INSERT procedure
has no indication that the node (2) is about to be
deleted.
We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.
Once a node has been marked, its pointer cannot be
changed.
The next section presents a solution due to Timothy
Harris.
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DELETE Procedure

Deleting the node containing 2 from the list {1,2,3,4}.
Mark the node.

1 2 3 4
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A Problematic Execution
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A Problematic Execution

In the worst case, INSERT can have Ω(n2) running time.
The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.
This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.
But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.
This solution is due to Fomitchev and Ruppert.
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DELETE Procedure

1 2 3
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F&R Performance

What does this increase in complexity give us?
In Harris’s algorithm, the average cost of an operation
is Ω(n̄ · c̄) where n̄ is the average length of the list
during an execution and c̄ is the average contention.
In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n̄ + c̄).
Is this increase in performance worth the increase in
complexity?
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Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.
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Plan & Challenges

Plan
Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

Challenges
Legal liability.
The usual challenges when implementing any
non-trivial algorithm, except...
Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
algorithm without introducing errors or degrading
performance will be challenging.
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The End

Questions?
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