CSE6490A
Presentation

Concurrent Singly-Linked Lists

Amgad Rady

DisCoVeri Group
Department of Electrical Engineering and Computer Science
York University

November 5, 2015



Outline

CSE6490A
Presentation

Amgad Rady Introduction
m Singly-Linked Lists
m Insertion
m Deletion

Concurrent SLLs
m Concurrency Primitives
m Naive Implementation of Concurrent SLLs

Harris’s algorithm
F&R’s Algorithm

Conclusion



Introduction to Singly-Linked Lists

CSE6490A
Presentation

Amgad Rady

Singly-Linked Lists

m Why implement concurrent singly-linked lists?



Introduction to Singly-Linked Lists

CSE6490A
Presentation

Amgad Rady

Singly-Linked Lists

m Why implement concurrent singly-linked lists?

m SLLs are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)



Introduction to Singly-Linked Lists

CSE6490A
Presentation

Amgad Rady

Singly-Linked Lists

m Why implement concurrent singly-linked lists?

m SLLs are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)

m SLUs are themselves part of larger data structures
(hash tables, skip lists.)



Introduction to Singly-Linked Lists

CSE6490A
Presentation

Amgad Rady

Singly-Linked Lists

m Why implement concurrent singly-linked lists?

m SLLs are used to implement many abstract data types
(LIFO and FIFO queues, disjoint sets.)

m SLUs are themselves part of larger data structures
(hash tables, skip lists.)

m SLUs are simple.



SLL Operations: INSERT

CSE6490A
Presentation

Amgad Rady

Inserting the node containing 2 into the list {1,3,4}. First,
find the appropriate successor for 2 by searching the list
from the head.

@ 3)——(4)
©




SLL Operations: INSERT

CSE6490A
Presentation

Amgad Rady

Inserting the node containing 2 into the list {1,3,4}. Next,
swing the pointer from the predecessor (1) to the node (2).



SLL Operations: DELETE

CSE6490A
Presentation

Amgad Rady

Deleting the node containing 2 from the list {1,2,3,4}. First,
find the node’s predecessor by searching the list from the
head.

® ©) O—




SLL Operations: DELETE

CSE6490A
Presentation

Amgad Rady

Deleting the node containing 2 from the list {1,2,3,4}.
Next, swing (2)’s predecessor’s pointer to (2)’s successor.




Concurrent SLLs

CSE6490A
Presentation

Amgad Rady

m Sequential singly-linked lists are a very simple data
structure.



Concurrent SLLs

CSE6490A
Presentation

Amgad Rady

m Sequential singly-linked lists are a very simple data
structure.

m We would like to be able to “lift” SLLs into a concurrent
setting without using expensive abstractions like locks,
semaphores, monitors, etc.



Concurrent SLLs

CSE6490A
Presentation

Amgad Rady

m Sequential singly-linked lists are a very simple data
structure.

m We would like to be able to “lift” SLLs into a concurrent
setting without using expensive abstractions like locks,
semaphores, monitors, etc.

m |n addition to being costly, these abstractions do not
have the property of lock-freedom.



Lock-freedom

CSE6490A
Presentation

Amgad Rady

Definition (Lock-freedom)

An algorithm is lock-free if at any configuration in an
execution of the algorithm, if there is at least one processor
that has not crashed then some processor will finish its
operation in a finite number of steps.



Concurrent SLLs cont.

CSE6490A
Presentation

Amgad Rady

m Can we construct a concurrent implementation of SLLs
using only COMPARE & SWAP?



Concurrent SLLs cont.

CSE6490A
Presentation

Amgad Rady

m Can we construct a concurrent implementation of SLLs
using only COMPARE & SWAP?

m Yes! But it’s very difficult.



Concurrent SLLs cont.

CSE6490A
Presentation

Amgad Rady

m Can we construct a concurrent implementation of SLLs
using only COMPARE & SWAP?

m Yes! But it’s very difficult.

m Let’s consider a naive implementation replacing READ’s
and WRITES’s with COMPARE & SWAP.



Concurrent INSERT and DELETE

CSE6490A
Presentation

Amgad Rady

We delete the node (2) and insert the node (3) concurrently
into the list {1,2,4}.

@ ©) ¢




Concurrent INSERT and DELETE

CSE6490A
Presentation

Amgad Rady

The resulting list is {1, 4}, rather than the correct {1, 3,4}.




What Went Wrong?

CSE6490A
Presentation

Amgad Rady
m The issue in this example is that the INSERT procedure

has no indication that the node (2) is about to be
deleted.



What Went Wrong?

CSE6490A
Presentation

Amgad Rady
m The issue in this example is that the INSERT procedure

has no indication that the node (2) is about to be
deleted.

m We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.



What Went Wrong?

CSE6490A
Presentation

Amgad Rady
m The issue in this example is that the INSERT procedure

has no indication that the node (2) is about to be
deleted.

m We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.

m Once a node has been marked, its pointer cannot be
changed.



What Went Wrong?

CSE6490A
Presentation

Amgad Rady
m The issue in this example is that the INSERT procedure

has no indication that the node (2) is about to be
deleted.

m We can fix this by augmenting each node with a mark
bit to indicate that the node is logically deleted before it
is physically deleted.

m Once a node has been marked, its pointer cannot be
changed.

m The next section presents a solution due to Timothy
Harris.



DELETE Procedure

CSE6490A
Presentation

Deleting the node containing 2 from the list {1, 2, 3,4}.
Mark the node.

@ © @) O,

Harris’s
algorithm



DELETE Procedure

CSE6490A
Presentation

Deleting the node containing 2 from the list {1,2,3,4}.
Mark the node.

Harris’s

algorithm . ® @




CSE6490A
Presentation

Harris’s
algorithm

A Problematic Execution




CSE6490A
Presentation

Harris’s
algorithm

A Problematic Execution




CSE6490A
Presentation

Harris’s
algorithm

A Problematic Execution




CSE6490A
Presentation

Harris’s
algorithm

A Problematic Execution




CSE6490A
Presentation

Harris’s
algorithm

A Problematic Execution




CSE6490A
Presentation

Harris’s
algorithm

A Problematic Execution




A Problematic Execution

CSE6490A
Presentation

Amgad Rady m In the worst case, INSERT can have Q(n?) running time.

Harris’s

algorithm



A Problematic Execution

CSE6490A
Presentation

Amgad Rady m In the worst case, INSERT can have Q(n?) running time.

m The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.

Harris’s

algorithm



A Problematic Execution

CSE6490A
Presentation

Amgad Rady m In the worst case, INSERT can have Q(n?) running time.

m The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.

m This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.

Harris’s

algorithm



A Problematic Execution

CSE6490A
Presentation

Amgad Rady m In the worst case, INSERT can have Q(n?) running time.

m The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.

m This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.

m But this is not quite enough as these backlinks can
grow and affect asymptotic performance.

Harris’s

algorithm



A Problematic Execution

CSE6490A
Presentation

Amgad Rady m In the worst case, INSERT can have Q(n?) running time.
m The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.

m This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.

m But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
Harris’s

algorithm m We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.



A Problematic Execution

CSE6490A
Presentation

Amgad Rady m In the worst case, INSERT can have Q(n?) running time.
m The problem here is that INSERT begins searching from
the head of the list each time it finds a marked node.

m This can be solved by having marked nodes also point
to their predecessors with a backlink pointer.

m But this is not quite enough as these backlinks can
grow and affect asymptotic performance.
Harris’s

algorithm m We solve this by introducing a flag bit to each node to
indicate that the successor is being deleted. A flagged
node cannot be marked for the duration of the flag,
which prevents the backlinks from growing.

m This solution is due to Fomitchev and Ruppert.




CSE6490A
Presentation

F&R’s
Algorithm

DELETE Procedure




CSE6490A
Presentation

F&R’s
Algorithm

DELETE Procedure




CSE6490A
Presentation

F&R’s
Algorithm

DELETE Procedure




CSE6490A
Presentation

F&R’s
Algorithm

DELETE Procedure




CSE6490A
Presentation

F&R’s
Algorithm

DELETE Procedure




F&R Performance

CSE6490A
Presentation

Amgad Rady

m What does this increase in complexity give us?

F&R’s
Algorithm



F&R Performance

CSE6490A
Presentation

Amgad Rady

m What does this increase in complexity give us?

m In Harris’s algorithm, the average cost of an operation
is Q(n - ¢) where nis the average length of the list
during an execution and ¢ is the average contention.

F&R’s
Algorithm



F&R Performance

CSE6490A
Presentation

Amgad Rady

m What does this increase in complexity give us?

m In Harris’s algorithm, the average cost of an operation
is Q(n - ¢) where nis the average length of the list
during an execution and ¢ is the average contention.

m In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n + ).

F&R’s
Algorithm



F&R Performance

CSE6490A
Presentation

Amgad Rady

m What does this increase in complexity give us?

m In Harris’s algorithm, the average cost of an operation
is Q(n - ¢) where nis the average length of the list
during an execution and ¢ is the average contention.

m In Fomitchev and Ruppert’s algorithm, the average cost
of an operation is O(n + ).

m Is this increase in performance worth the increase in

F&R’s
Algorithm complexity?



Plan & Challenges

CSE6490A
Presentation

Amgad Rady

Conclusion




Plan & Challenges

CSE6490A
Presentation

m Plan

m Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of

threads, causing Manycore Testing Lab much grief.

Conclusion



Plan & Challenges

CSE6490A
Presentation

m Plan

m Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.

m Challenges

Conclusion



Plan & Challenges

CSE6490A
Presentation

m Plan
m Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.
m Challenges
m Legal liability.

Conclusion



Plan & Challenges

CSE6490A
Presentation

m Plan
m Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of
threads, causing Manycore Testing Lab much grief.
m Challenges
m Legal liability.
m The usual challenges when implementing any
non-trivial algorithm, except...

Conclusion



Plan & Challenges

CSE6490A
Presentation

Amgad Rady

m Plan

m Implement Fomitchev and Ruppert’s algorithm and
assess its performance on a massive number of

threads, causing Manycore Testing Lab much grief.

m Challenges
m Legal liability.
m The usual challenges when implementing any
non-trivial algorithm, except...
m Java doesn’t have COMPARE & SWAP. It has the
weaker primitive COMPARE & SET. Adapting the
Conclusion algorithm without introducing errors or degrading
performance will be challenging.



CSE6490A
Presentation

Amgad Rady

Questions?

Conclusion



	Introduction
	Singly-Linked Lists
	Insertion
	Deletion

	Concurrent SLL's
	Concurrency Primitives
	Naïve Implementation of Concurrent SLL's

	Harris's algorithm
	F&R's Algorithm
	Conclusion

