
Tarjan Algorithm
Java Implementation

Mohamad Alsabbagh

November 5, 2015
Department of Electrical Engineering and Computer Science York University, Toronto



Problems Tarjan’s algorithms solve
Tarjan's Algorithms solve three related problems relevant to model checking. 
Given a state graph;

● Find its Strongly Connected Components (SCCs)
● Identify which nodes are in a loop
● Locate which nodes are in a lasso



Data Structures
● Node
● ManagementStack
● Suspended



Worker (Runnable)
● TarjanStarter
● TarjanWorker



Pseudocode (1)
Initial node addition to a thread:



Pseudocode (2)
Main worker body:



Transfer nodes on cyclic dependencies
● Get nodes to move.
● Update nodes.



Check Child
Process cycles & lassos.



Node processing
● Process a node and mark it complete.
● notify for completed nodes.
● Process cycles & SCCs.



Shared Memory Protection
● CyclicBarrier (single object, read only).
● Suspended (single object, read/write).
● Reporter (single object, write only).
● ThreadCompleteListener (single object, write only).
● Node (many objects, read/write).
● ManagementStack (one per thread, can be shared, 

read/write)



Protection
● Node.
● Suspended.
● During transfer nodes

we sync(Node) as well.



Testing - Graph Types
● SINGLE: a graph without any connection between nodes at all.
● PAIRS : a graph with a circular link between every two nodes sequentially 

○ (node(i) ↔ node(i + 1)).
● ONE CIRCLE: a graph with a big circular link between all nodes sequentially 

○ (node(0) → node(1), ..., node(i) → node(i + 1), node(i + 1) → node(i + 2), ..., node(n − 2) → node(n − 1), 
node(n − 1) → node(0)).

● SHARED PAIRS TRIPLES: a graph which has both PAIRS and TRIPLES features. This will allow the graph to have 
circles within circles which will end up as blocks of six with the following features
○ node(i) ↔ node(i + 1), node(i + 2) ↔ node(i + 3), node(i + 4) ↔ node(i + 5), && node(i) → node(i + 1), 

node(i + 1) → node(i + 2), node(i + 2) → node(i), node(i + 3) → node(i + 4), node(i + 4) → node(i + 5), 
node(i + 5) → node(i + 3)

● LASSO: a graph with a lasso repeated every ten nodes segment
○ node(i) → node(i+1),node(i+1) → node(i+2),...,node(i+8) → node(i+9),node(i+9) → node(i+7)

● RANDOM: this option generates random links between nodes with a random number of children per node. 
This was useful to detect interesting bugs during the development process.



Conclusions
● Concurrency is not easy. 
● Testing is even harder.

Next steps?
● Test automation.
● Performance analysis. 



Q&A

Thank you


