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Problems Tarjan’s algorithms solve
Tarjan's Algorithms solve three related problems relevant to model checking. 
Given a state graph;

● Find its Strongly Connected Components (SCCs)
● Identify which nodes are in a loop
● Locate which nodes are in a lasso



Data Structures
● Node
● ManagementStack
● Suspended



Worker (Runnable)
● TarjanStarter
● TarjanWorker



Pseudocode (1)
Initial node addition to a thread:



Pseudocode (2)
Main worker body:



Transfer nodes on cyclic dependencies
● Get nodes to move.
● Update nodes.



Check Child
Process cycles & lassos.



Node processing
● Process a node and mark it complete.
● notify for completed nodes.
● Process cycles & SCCs.



Shared Memory Protection
● CyclicBarrier (single object, read only).
● Suspended (single object, read/write).
● Reporter (single object, write only).
● ThreadCompleteListener (single object, write only).
● Node (many objects, read/write).
● ManagementStack (one per thread, can be shared, 

read/write)



Protection
● Node.
● Suspended.
● During transfer nodes

we sync(Node) as well.



Testing - Graph Types
● SINGLE: a graph without any connection between nodes at all.
● PAIRS : a graph with a circular link between every two nodes sequentially 

○ (node(i) ↔ node(i + 1)).
● ONE CIRCLE: a graph with a big circular link between all nodes sequentially 

○ (node(0) → node(1), ..., node(i) → node(i + 1), node(i + 1) → node(i + 2), ..., node(n − 2) → node(n − 1), 
node(n − 1) → node(0)).

● SHARED PAIRS TRIPLES: a graph which has both PAIRS and TRIPLES features. This will allow the graph to have 
circles within circles which will end up as blocks of six with the following features
○ node(i) ↔ node(i + 1), node(i + 2) ↔ node(i + 3), node(i + 4) ↔ node(i + 5), && node(i) → node(i + 1), 

node(i + 1) → node(i + 2), node(i + 2) → node(i), node(i + 3) → node(i + 4), node(i + 4) → node(i + 5), 
node(i + 5) → node(i + 3)

● LASSO: a graph with a lasso repeated every ten nodes segment
○ node(i) → node(i+1),node(i+1) → node(i+2),...,node(i+8) → node(i+9),node(i+9) → node(i+7)

● RANDOM: this option generates random links between nodes with a random number of children per node. 
This was useful to detect interesting bugs during the development process.



Conclusions
● Concurrency is not easy. 
● Testing is even harder.

Next steps?
● Test automation.
● Performance analysis. 



Q&A

Thank you


