
Concurrent Implementation
of k-NN for WLAN

Positioning

Eros Gulo
Department of Earth and Space Science, York University

November 10th, 2015

K–NEAREST NEIGHBOURS

•  Search a set of reference points for
the k-nearest points to a query point
and repeat for successive query
points.

•  Nearness or proximity can be
arbitrarily defined, though usually a
metric of distance (e.g. Euclidean
distance) is used.

•  The query point is classified or
assigned a value by its nearest
neighbours.

k-NN in 2 dimensions	
(k = 3)	

K-NN IN WLAN POSITIONING

WLAN Signal Fingerprint Matching (WSFM)

•  Reference set is a database or map of the signal

strength of all WLAN access points (APs) at all
locations in the positioning area.

•  Query point is a sample of the signal strengths of all
APs (fingerprint) at user’s particular location.

•  k-NN used to match the fingerprint to the most similar
locations (based on AP signal strength)

 in the database.

K-NN IN WSFM

Reference Fingerprint Set:

Query Fingerprint Set:

Distance computed for
each possible pairing:

Number of APs:

L = {ℓ1,ℓ2,…,ℓm}

F = { f1, f2,…, fn}

i ∈ 1,n[]j ∈ 1,m[]D fi,ℓ j()

d

WLAN SIGNAL DIFFERENCE FINGERPRINT
MATCHING (WSDFM)

Different definition of the fingerprint, namely signal
strength differences, as opposed to absolute signal
strengths.

Greatly increased dimensions of distance calculations,

differences between every possible pairing of visible
APs results in distance calculations in
dimensions, where is the number of visible APs.

d(d −1) / 2
d

SEQUENTIAL IMPLEMENTATION

1.  Initialize an array of size k to hold the k smallest distances.

2.  Perform the following consecutively for each reference fingerprint:

i.  Calculate distance between reference fingerprint and query
fingerprint.

ii.  If the distance is smaller than any of the distances in the distance
array, place this distance in the array and remove the largest
distance previously contained in the array.

3.  Once all distances have been calculated, the array that remains will
have the k smallest distances, and their respective reference
fingerprints can be returned to complete the localization of the query
fingerprint.

PROPOSED CONCURRENT K-NN ALGORITHM

The distance calculations between different and
pairings are all independent of each other, therefore,
computation time can be reduced if they are computed
in parallel.

Sorting of all the distances for each does not have to

be fully completed, therefore, computation time can also
be reduced by only sorting some of the distances. The
distances are only sorted until the first k-items in the list
are the k-smallest and they are in order.

jℓfi

fi

INITIAL CONCURRENT IMPLEMENTATION

1.  Allocate arrays to hold all computed distances and their respective
indices.

2.  Initialize a CyclicBarrier to pause the main thread until distance
calculations are complete.

3.  Create individual threads to calculate each distance.

4.  Each distance calculation thread calls await() on the CyclicBarrier after
distance is calculated and written to the distance array.

5.  Main thread calls await() prior to sorting the distance array, the
CyclicBarrier allows it to proceed once all distances have been
computed.

6.  Main thread sorts the distances (while keeping track of their reference
location indices), all distance calculation threads terminate.

INITIAL CONCURRENT IMPLEMENTATION
CODE

INITIAL CONCURRENT IMPLEMENTATION
CODE

INITIAL TESTING ON WSFM

•  104 locations represented by reference fingerprints
•  800 – 3500 query fingerprints

•  Sequential Implementation is approximately 4 – 5 times
faster than the initial concurrent implementation.

Hmm… This isn’t how concurrency is supposed to work.

INITIAL TESTING ON WSDFM

Concurrent implementation is 2 times faster than the
sequential implementation.

OK, this is more reasonable, but still underwhelming.

Maybe sorting algorithm is too slow?

Why don’t we try a different algorithm…

ALTERNATE CONCURRENT IMPLEMENTATION

1.  Allocate arrays to hold all computed distances and their respective indices.

2.  Initialize a CyclicBarrier to pause the main thread until distance calculations are
complete.

3.  Create threads that will each calculate 5 – 20 distances, passing to them the indices
of their respective reference fingerprints.

4.  Each thread calculates its respective distances then sorts them (keeping track of their
reference indices) prior to writing them to its allocated section of the distance array,
then it calls await() on the CyclicBarrier.

5.  Main thread calls await() after the creation of the distance calculation threads, the

CyclicBarrier allows it to proceed once all distance calculation threads have also
called await(), distance calculation threads terminate at this point.

6.  Main thread iteratively pulls the smallest distance (and its respective index) from all
the first distances in each section of the distance array until the k smallest distances
of the entire array have been pulled.

TESTING THE IMPACT OF SORTING

How much is there to gain from improving the sorting?

Not much…

Tests were performed that omitted the sorting component

of the k-NN algorithm (returned incorrect results).

Performance gains were negligible!

ALTERNATE CONCURRENT IMPLEMENTATION
CODE

ALTERNATE CONCURRENT IMPLEMENTATION
CODE

THE REAL PROBLEM

Thread creation is very computationally expensive!

What about a balanced amount of distance calculation

threads?

Using one thread to calculate 10 distances:

-  Sequential WSFM is less than 1.5 times faster than
concurrent WSFM

-  Concurrent WSDFM is about 1.8 times faster than
sequential WSDFM

Still not good enough!

FUTURE WORK

Look at re-using threads to remove the massive overhead
of thread creation.

New implementation using Thread Pools.

Thorough and more accurate performance testing on

Intel’s Manycore Testing Lab.

END OF PRESENTATION

Thank you for your attention.

Feel free to ask any questions you may have.

