Concurrent Genetic Algorithm with Island Migration

Markus Solbach

Laboratory for Active and Attentive Vision Department of Computer Science and Engineering York University, Toronto, Ontario, Canada

October 16, 2015

The Paper Genetic Algorithm Island Migration Test-Domain Conclusion

Overview

- The Paper
- Genetic Algorithm
- Island Migration
- Test-Domain
- Conclusion

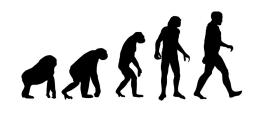


Figure : Evolution || i.livescience.com (Oct. 5. 15)

The Paper Genetic Algorithm Island Migration Test-Domain Conclusion

The Paper

Worthy N Martin, Jens Lienig, and James P Cohoon. Island (migration) models: evolutionary algorithms based on punctuated equilibria.

Handbook of evolutionary computation, 6(3), 1997.

Figure:
Worthy N. Martin
||cs.virginia.edu (Oct. 7. 15)

Figure : Jens Lienig ||www.ifte.de (Oct. 7. 15)

Figure:
James P. Cohoon
||cs.virginia.edu (Oct. 7. 15)

3/2

4/21

Paper Genetic Algorithm Island Migration Test-Domain Conclusion

Genetic Algorithm

- ► Genetic Algorithm
 - evolutionary algorithm
 - population-based optimization algorithm
 - meta heuristic optimization algorithm
 - problems without an analytic approach
 - follows biological evolution (C. Darwin)
 - relies heavily on randomization

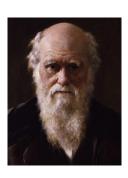


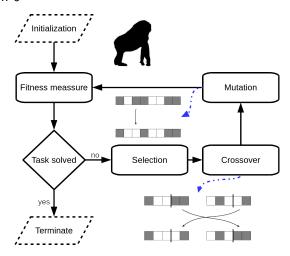
Figure: Charles Robert Darwin (1809-1882)

5/2

Paper Genetic Algorithm Island Migration Test-Domain Conclusion

Real Word Example

- X-Band Antenna Design
 - NASA's Space Technology 5 Spacecraft
 - Automatically designed
 - changes: minimal effort of human effort

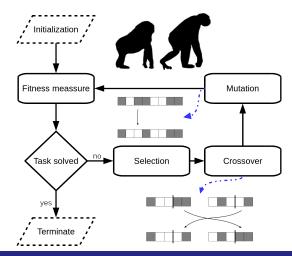

Figure: Evolved Antenna ST5-33.142.7 || wikipedia (Oct. 5. 15)

6/2

per **Genetic Algorithm** Island Migration Test-Domain Conclusion

Genetic Algorithm Flow Chart

Generation 0

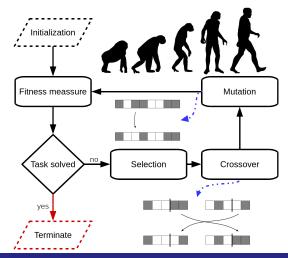


7/2

per **Genetic Algorithm** Island Migration Test-Domain Conclusion

Genetic Algorithm Flow Chart

Generation n



8/2

Genetic Algorithm Island Migration Test-Domain Conclusion

Genetic Algorithm Flow Chart

Generation n + m

9/21

ne Paper Genetic Algorithm Island Migration Test-Domain Conclusion

Population-based optimization algorithm

- Search-space usually very big
- Each individual is a solution candidate
- Search-space affects population
 - small search-space = small population
 - ... and vice versa
- ► Size of population affects run-time
- Local Maxima Problem

Figure : Example Population

10/21

11/2

he Paper Genetic Algorithm Island Migration Test-Domain Conclusion

Extension: Island Migration

- Isolated Evolution
- Each Island is a subpopulation
- Independent GA on each Island
- Migration after an epoch e
- Enrich Gen-Pool

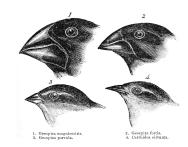
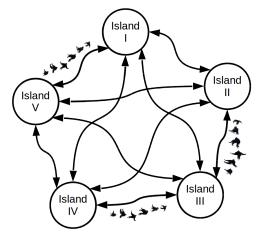



Figure :
Darwin's Finches || wikipedia (Oct. 7. 15)

12/21

Genetic Algorithm Island Migration Test-Domain Conclusion

Island Migration Illustration

13/2

he Paper Genetic Algorithm Island Migration Test-Domain Conclusion

Island Migration Parameters

- Epoch length?
- Dynamic Migration?
 - ► How to set Threshold?
 - ► How often?
- How many Individuals will migrate?
- Which Individuals?
- How Islands are connected?
- "Different Fitness functions?"
- **.** . . .
- ▶ GA Param. + IM Param. > 10

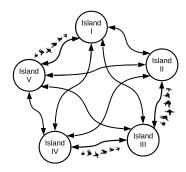


Figure : Island Migration Illustration

GA Param - Rate: Mutation, Crossover, Number of Individuals and Generations, fitness-threshold, ...

14/2

Test-Domain

Fhe Paper Genetic Algorithm Island Migration **Test-Domain** Conclusion

VLSI design problem

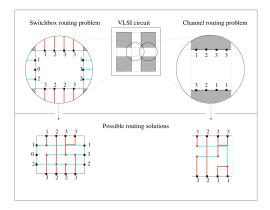


Figure :Example VLSI problem ||source : 1

¹W. Martin, J. Lienig, and J. Cohoon. Island (migration) models: evolutionary algorithms based on punctuated equilibria. *Handbook of evolutionary computation*, **6**(3), 1997.

ne Paper Genetic Algorithm Island Migration **Test-Domain** Conclusion

VLSI design problem

Important Factors

- Crosstalk (coupled capacitance)
- Propagation delay (length of interconnections)
- Number vias (electrical and fabrication problems)

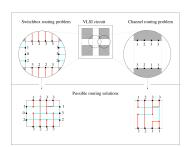


Figure :Example VLSI problem

17/21

Fitness-Function of Individual p_i

$$Obj(p_i) = w_1 \cdot I_{nets}(p_i) + w_2 \cdot n_{vias}(p_i) + w_3 \cdot I_{par}(p_i)$$
 (1)

Where:

 $I_{nets}(p_i)$ total length of nets of p_i

 $n_{vias}(p_i)$ number of vias of p_i

 $I_{par}(p_i)$ total length of crosstalk segments of p_i

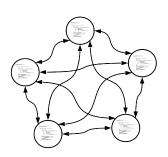
W₁ weight factor (empirically set to 1.0)

W2 weight factor (empirically set to 2.0)

W3 weight factor (empirically set to 0.01)

Actually an inverse Fitness-Function

▶ High Value \hookrightarrow Bad Fitness \parallel *Low Value* \hookrightarrow Good Fitness


18/2:

Test-Domain

Pseudocode

Each Island/Thread \hookrightarrow One Sequential Genetic Algorithm

```
Sequential_GA(\mathcal{P}_i, G_i)
     For generation \leftarrow 1 to G_i do
             \mathcal{P}_{\text{new}} \leftarrow \emptyset;
             For offspring \leftarrow 1 to Max\_offspring_i do
                      p_{\alpha} \leftarrow \mathbf{Selection}(\mathcal{P}_i);
                      p_{\beta} \leftarrow \mathbf{Selection}(\mathcal{P}_i);
                      \mathcal{P}_{\text{new}} = \mathcal{P}_{\text{new}} \cup \mathbf{Crossover}(p_{\alpha}, p_{\beta});
             od
             Fitness_calculation(\mathcal{P}_i \cup \mathcal{P}_{\text{new}});
             \mathcal{P}_i \leftarrow \mathbf{Reduction}(\mathcal{P}_i \cup \mathcal{P}_{\text{new}});
             Mutation(\mathcal{P}_i);
             Fitness_calculation(\mathcal{P}_i);
    od
```


Markus Solbach

Conclusion

20/2

he Paper Genetic Algorithm Island Migration Test-Domain **Conclusion**

Conclusion

- A promissing extension to GA is given
 - Usage of Concurrency (Run-Time)
 - Bigger Gen-Pool (Local Maxima Problem)
- Test-Domain seems to be well chosen (Huge Search-Space)

Plan

- ▶ Implement both algorithms (Sequential and Island Migration)
- Compare performances of both (Best Fitness and Run-Time)
- Compare to other routing algorithms (WEAVER, Monreale,...)

Challenges

- ▶ Implementation details very sparse (9 Islands each 50 Individuals)
- Shared memory access (migration)

21/2

Benchmark

- ▶ 11 Benchmarks with published results available
- ► Joo6_16
 - ▶ WEAVER hookrightarrow 220 s, 23 Vias, 131 Net-length
 - ▶ Monreale *hookrightarrow* ? s, 19 Vias, 120 Net-length
 - ► GAP² hookrightarrow **207** s, **15** Vias, **115** Net-length
- Burstein's Difficult Channel
 - ▶ PACKER hookrightarrow 87 s, 10 Vias, 82 Net-length
 - ▶ Monreale *hookrightarrow* ? s, 10 Vias, 82 Net-length
 - ► GAP³ hookrightarrow **16** s, **8** Vias, 82 Net-length

²Another Genetic Algorithm

³Another Genetic Algorithm

Real Word Example

- X-Band Antenna Design
 - NASA's Space Technology 5 Spacecraft
 - Automatically designed
 - changes: minimal effort of human effort
 - $ightharpoonup F = vswr \cdot gain \cdot standarddeviation$

Figure : Evolved Antenna ST5-33.142.7 ||wikipedia (Oct. 5. 15)

4

23/2

⁴*vswr* = standing wave ratio